Molecular Dynamics Simulations of Hydrophobic Associations in Aqueous Salt Solutions Indicate a Connection between Water Hydrogen Bonding and the Hofmeister Effect (original) (raw)
Related papers
Effects of salts of the Hofmeister series on the hydrogen bond network of water
Journal of Molecular Liquids, 2008
The effect of salts on water behavior has been a topic of interest for many years; however, some recent reports have suggested that ions do not influence the hydrogen bonding behavior of water. Using an effective two-state hydrogen bonding model to interpret the temperature excursion infrared response of the O-H stretch of aqueous salt solutions, we show a strong correlation between salt effects on water hydrogen bonding and the Hofmeister order. These data clearly show that salts do have a measurable impact on the equilibrium hydrogen bonding behavior of water and support models which explain Hofmeister effects on the basis of solute charge density.
Molecular Theory and the Effects of Solute Attractive Forces on Hydrophobic Interactions
The Journal of Physical Chemistry B, 2016
The role of solute attractive forces on hydrophobic interactions is studied by coordinated development of theory and simulation results for Ar atoms in water. We present a concise derivation of the local molecular field (LMF) theory for the effects of solute attractive forces on hydrophobic interactions, a derivation that clarifies the close relation of LMF theory to the EXP approximation applied to this problem long ago. The simulation results show that change from purely repulsive atomic solute interactions to include realistic attractive interactions diminishes the strength of hydrophobic bonds. For the Ar-Ar rdfs considered pointwise, the numerical results for the effects of solute attractive forces on hydrophobic interactions are of opposite sign and larger in magnitude than predicted by LMF theory. That comparison is discussed from the point of view of quasi-chemical theory, and it is suggested that the first reason for this difference is the incomplete evaluation within LMF theory of the hydration energy of the Ar pair. With a recent suggestion for the system-size extrapolation of the required correlation function integrals, the Ar-Ar rdfs permit evaluation of osmotic second virial coefficients B2. Those B2 also show that incorporation of attractive interactions leads to more positive (repulsive) values. With attractive interactions in play, B2 can change from positive to negative values with increasing temperatures. This is consistent with the historical work of Watanabe, et al., that B2 ≈ 0 for intermediate cases. In all cases here, B2 becomes more attractive with increasing temperature.
Effects of salt addition on strength and dynamics of hydrophobic interactions
Chemical Physics Letters, 2007
Effects of salt addition on strength and dynamics of hydrophobic interactions are investigated by molecular dynamics simulations for hydrophobic solutes in aqueous solution of various salts such as sodium chloride, ammonium chloride, and guanidinium chloride. Hydrophobic interaction is reduced by ammonium chloride, enhanced by sodium chloride, and strongly enhanced by guanidinium chloride. Addition of salts tends to delay the relaxations of hydrophobic associations by reducing water diffusivities and enhancing structuring of water. The underlying molecular mechanisms are discussed in
Water's Hydrogen Bonds in the Hydrophobic Effect: A Simple Model
The Journal of Physical Chemistry B, 2005
We propose a simple analytical model to account for water's hydrogen bonds in the hydrophobic effect. It is based on computing a mean-field partition function for a water molecule in the first solvation shell around a solute molecule. The model treats the orientational restrictions from hydrogen bonding, and utilizes quantities that can be obtained from bulk water simulations. We illustrate the principles in a 2-dimensional Mercedes-Benz-like model. Our model gives good predictions for the heat capacity of hydrophobic solvation, reproduces the solvation energies and entropies at different temperatures with only one fitting parameter, and accounts for the solute size dependence of the hydrophobic effect. Our model supports the view that water's hydrogen bonding propensity determines the temperature dependence of the hydrophobic effect. It explains the puzzling experimental observation that dissolving a nonpolar solute in hot water has positive entropy.
The Journal of Chemical Physics, 2007
The hydrophobic interaction that is characterized by a potential of mean force (PMF) between spherical apolar solutes immersed in the simple point charge (SPCE) model for water was studied using an interaction site model integral equation based on a density-functional theory for molecular fluids. For comparison with the PMFs for various size solutes in the SPCE model, the PMFs in a Lennard-Jones (LJ) model for a solvent whose diameter is same as the SPCE model were also studied using a hypernetted chain integral equation. It is noted in the LJ model that the hydrogen bond and its network structure are completely ignored, but the translational entropy is taken into account. Both PMFs obtained from the SPCE model and from the LJ model have a large first minimum at a contact distance of solutes. In the case that the solute size is about three times larger than water, these PMFs also have a large maximum at a longer distance than the contact position. The strong attraction is attributed to the translational entropy of the solvent, and that the large activation barrier is arising from the weak attraction between the solute and the solvent. The comparison between the SPCE model and the LJ solvent model suggests that the qualitative description of the hydrophobic interaction is possible by using the LJ solvent model. On the other hand, the dewetting tendency on the surface of the apolar solute in a room condition is observed only on the SPCE model. These results indicate that the characteristics of water such as the hydrogen bond affect rather the hydrophobic hydration than the hydrophobic interaction.
Molecular Hydrophobic Attraction and Ion-Specific Effects Studied by Molecular Dynamics †
Langmuir, 2008
Much is written about "hydrophobic forces" that act between solvated molecules and nonpolar interfaces, but it is not always clear what causes these forces and whether they should be labeled as hydrophobic. Hydrophobic effects roughly fall in two classes, those that are influenced by the addition of salt and those that are not. Bubble adsorption and cavitation effects plague experiments and simulations of interacting extended hydrophobic surfaces and lead to a strong, almost irreversible attraction that has little or no dependence on salt type and concentration. In this paper, we are concerned with hydrophobic interactions between single molecules and extended surfaces and try to elucidate the relation to electrostatic and ion-specific effects. For these nanoscopic hydrophobic forces, bubbles and cavitation effects play only a minor role and even if present cause no equilibration problems. In specific, we study the forced desorption of peptides from nonpolar interfaces by means of molecular dynamics simulations and determine the adsorption potential of mean force. The simulation results for peptides compare well with corresponding AFM experiments. An analysis of the various contributions to the total peptide-surface interactions shows that structural effects of water as well as van der Waals interactions between surface and peptide are important. Hofmeister ion effects are studied by separately determining the effective interaction of various ions with hydrophobic surfaces. An extension of the Poisson-Boltzmann equation that includes the ion-specific potential of mean force yields surface potentials, interfacial tensions, and effective interactions between hydrophobic surfaces. There, we also analyze the energetic contributions to the potential of mean force and find that the most important factor determining ion-specific adsorption at hydrophobic surfaces can best be described as surface-modified ion hydration.
Hydrophobic Interactions by Monte Carlo Simulations
Zeitschrift Fur Physikalische Chemie-international Journal of Research in Physical Chemistry & Chemical Physics, 2006
The structural and thermodynamic properties of liquid water and of the dilute solutions of methane and ethane in water were calculated by Monte Carlo simulations in the temperature range 298 K to 318 K and 298 K to 333 K, respectively. The nonpolar molecules were modeled as one-and two-center Lennard-Jones particles; for the interaction potential of water a modified TIP5P model was used. The results indicate that the nonpolar solutes tend to aggregate with increasing temperature. Methane molecules preferably form waterseparated pairs, even at higher temperatures, whereas for ethane contact pairs are more likely. For the thermodynamic conditions studied here, the residual chemical potential of water is a linear function of temperature.
Interactions between macromolecules and ions: the Hofmeister series
Current Opinion in Chemical Biology, 2006
The Hofmeister series, first noted in 1888, ranks the relative influence of ions on the physical behavior of a wide variety of aqueous processes ranging from colloidal assembly to protein folding. Originally, it was thought that an ion's influence on macromolecular properties was caused at least in part by 'making' or 'breaking' bulk water structure. Recent timeresolved and thermodynamic studies of water molecules in salt solutions, however, demonstrate that bulk water structure is not central to the Hofmeister effect. Instead, models are being developed that depend upon direct ion-macromolecule interactions as well as interactions with water molecules in the first hydration shell of the macromolecule.