CA-RNN: Using Context-Aligned Recurrent Neural Networks for Modeling Sentence Similarity (original) (raw)

Proceedings of the AAAI Conference on Artificial Intelligence

The recurrent neural networks (RNNs) have shown good performance for sentence similarity modeling in recent years. Most RNNs focus on modeling the hidden states based on the current sentence, while the context information from the other sentence is not well investigated during the hidden state generation. In this paper, we propose a context-aligned RNN (CA-RNN) model, which incorporates the contextual information of the aligned words in a sentence pair for the inner hidden state generation. Specifically, we first perform word alignment detection to identify the aligned words in the two sentences. Then, we present a context alignment gating mechanism and embed it into our model to automatically absorb the aligned words' context for the hidden state update. Experiments on three benchmark datasets, namely TREC-QA and WikiQA for answer selection and MSRP for paraphrase identification, show the great advantages of our proposed model. In particular, we achieve the new state-of-the-art...

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact