GLP-1 agonist-based therapies: An emerging new class of antidiabetic drug with potential cardioprotective effects (original) (raw)

Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control

Diabetes, Obesity and Metabolism, 2011

Type 2 diabetes mellitus is a well-established risk factor for cardiovascular disease (CVD). New therapeutic approaches have been developed recently based on the incretin phenomenon, such as the degradation-resistant incretin mimetic exenatide and the glucagon-like peptide-1 (GLP-1) analogue liraglutide, as well as the dipeptidyl dipeptidase (DPP)-4 inhibitors, such as sitagliptin, vildagliptin, saxagliptin, which increase the circulating bioactive GLP-1. GLP-1 exerts its glucose-regulatory action via stimulation of insulin secretion and glucagon suppression by a glucose-dependent way, as well as by weight loss via inhibition of gastric emptying and reduction of appetite and food intake. These actions are mediated through GLP-1 receptors (GLP-1Rs), although GLP-1R-independent pathways have been reported. Except for the pancreatic islets, GLP-1Rs are also present in several other tissues including central and peripheral nervous systems, gastrointestinal tract, heart and vasculature, suggesting a pleiotropic activity of GLP-1. Indeed, accumulating data from both animal and human studies suggest a beneficial effect of GLP-1 and its metabolites on myocardium, endothelium and vasculature, as well as potential anti-inflammatory and antiatherogenic actions. Growing lines of evidence have also confirmed these actions for exenatide and to a lesser extent for liraglutide and DPP-4 inhibitors compared with placebo or standard diabetes therapies. This suggests a potential cardioprotective effect beyond glucose control and weight loss. Whether these agents actually decrease CVD outcomes remains to be confirmed by large randomized placebo-controlled trials. This review discusses the role of GLP-1 on the cardiovascular system and addresses the impact of GLP-1-based therapies on CVD outcomes.

GLP-1 receptor agonists and reduction of cardiometabolic risk: Potential underlying mechanisms

Biochimica et biophysica acta, 2018

Type 2 diabetes mellitus (T2DM) is a metabolic condition with an elevated impact on cardiovascular (CV) risk. The innovative therapeutic approaches for T2DM - incretin-based therapies (IBTs), including glucagon-like peptide 1 (GLP-1) receptor agonists, have become popular and more widely used in recent years. The available scientific data from clinical studies and clinical practice highlights their beyond glucose-lowering effects, which is achieved without any increase in hypoglycaemia. The former effects include reduction in body weight, lipids, blood pressure, inflammatory markers, oxidative stress, endothelial dysfunction, and subclinical atherosclerosis, thus reducing and potentially preventing CV events. In fact, the introduction of IBTs is one of the key moments in the history of diabetes research and treatment. Such therapeutic strategies allow customization of antidiabetic treatment to each patient's need and therefore obtain better metabolic control with reduced CV risk...

Future perspectives on glucagon-like peptide-1, diabetes and cardiovascular risk

Nutrition, Metabolism and Cardiovascular Diseases, 2008

Aims: Glucagon-like peptide-1 (GLP-1), a gastrointestinal hormone mainly produced in the post-prandial state, reduces blood glucose through the stimulation of insulin secretion and the inhibition of glucagon release. Long-acting GLP-1 receptor agonists, and dipeptidyl-peptidase-4 (DPP-4) inhibitors which increase GLP-1 levels, are used as hypoglycemic treatments in type 2 diabetes. This paper aims at reviewing the potential benefit of those treatments in the prevention of cardiovascular risk in type 2 diabetic patients. Data synthesis: Experimental studies have shown that GLP-1 has several potentially beneficial actions on cardiovascular risk. Some of those, such as protection from myocardial ischemic damage and improvement of cardiac function, have also been demonstrated in humans. However, the equivalence of GLP-1 agonists and DPP-4 inhibitors with GLP-1, with respect to cardiovascular risk profile, cannot be assumed or taken for granted. Drugs of those two classes have been shown to effectively reduce glycated hemoglobin and to have a specific effect on post-prandial glucose; furthermore, they seem to reduce blood pressure and to have some favorable effects on lipid profiles. Additionally, GLP-1 agonists induce weight loss in diabetic patients. Conclusion: The profile of action of GLP-1 receptor agonists and DPP-4 inhibitors suggests the possibility of an actual reduction in cardiovascular risk, which needs to be confirmed by large long-term clinical trials.

Glucagon-like peptide-1 receptor agonists favorably address all components of metabolic syndrome

World Journal of Diabetes

Cardiovascular death is the leading cause of mortality for patients with type 2 diabetes mellitus. The etiology of cardiovascular disease in diabetes may be divided into hyperglycemia per se and factors operating through components of metabolic syndrome (MetS). Hyperglycemia causes direct injury to vascular endothelium and possibly on cardiac myocytes. MetS is a cluster of risk factors like obesity, hyperglycemia, hypertension and dyslipidemia. The incidence of this syndrome is rising globally. Glucagon-like peptide-1 receptor agonists (GLP-1RA) are a group of drugs, which address all components of this syndrome favorably. Experimental evidence suggests that they have favorable actions on myocardium as well. Several compounds belonging to GLP-1RA class are in market now and a large number awaiting their entry. Although, originally this class of drugs emerged as a treatment for type 2 diabetes mellitus, more recent data generated revealed beneficial effects on multiple metabolic parameters. We have studied literature published between 2000 and 2016 to look into effects of GLP-1RA on components of MetS. Results from recently concluded clinical trials suggest that some of the molecules in this class may have favorable effects on cardiovascular outcome.

What Is the Mechanism Driving the Reduction of Cardiovascular Events from Glucagon-like Peptide-1 Receptor Agonists?—A Mini Review

Molecules, 2021

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are considered the standard of care for type 2 diabetes in many countries worldwide. These molecules have profound anti-hyperglycaemic actions with a favourable safety profile. They are now being considered for their robust cardiovascular (CV) protective qualities in diabetic patients. Most recent CV outcome trials have reported that GLP-1 RAs reduce major adverse cardiovascular events (MACE). Furthermore, the GLP-1 RAs seem to target the atherosclerotic CV disease processes preferentially. GLP-1 RAs also improve a wide range of routinely measured surrogate markers associated with CV risk. However, mediation analysis suggests these modest improvements may contribute indirectly to the overall anti-atherogenic profile of the molecules but fall short in accounting for the significant reduction in MACE. This review explores the body of literature to understand the possible mechanisms that contribute to the CV protective profile of GL...

Cardiovascular and hemodynamic effects of glucagon-like peptide-1

Reviews in endocrine & metabolic disorders, 2014

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has been shown to have hemodynamic and cardioprotective capacity in addition to its better characterized glucoregulatory actions. Because of this, emerging research has focused on the ability of GLP-1 based therapies to drive myocardial substrate selection, enhance cardiac performance and regulate heart rate, blood pressure and vascular tone. These studies have produced consistent and reproducible results amongst numerous laboratories. However, there are obvious disparities in findings obtained in small animal models versus those of higher mammals. This species dependent discrepancy calls to question, the translational value of individual findings. Moreover, few studies of GLP-1 mediated cardiovascular action have been performed in the presence of a pre-existing comorbidities (e.g. obesity/diabetes) which limits interpretation of the effectiveness of incretin-based therapies in the setting of disease. This review addresses ...

Cardiovascular Effects of Glucagon-Like Peptide 1

Mini-Reviews in Medicinal Chemistry

Glucagon-like peptide-1 (GLP-1) is involved in satiety control and glucose homeostasis. Besides, GLP-1 has cardiovascular effects. In experimental models, GLP-1 increases cardiac output and exerts a direct vasodilatory effect. In animals with dilated cardiomyopathy GLP-1 improves left ventricular performance. Human data demonstrated that GLP-1 reduces arterial blood pressure, improves endothelial function in individuals with diabetes and left ventricular function in patients with heart failure. Administration of GLP-1 increases ejection fraction in acute myocardial infraction and reduces ischemia-reperfusion myocardial injury. Although more research is needed, these data suggest that GLP-1 may be used with promising results in patients with heart failure, acute myocardial infarction and revascularization procedures in addition to the standard therapy.

Cardiovascular benefits of GLP-1 agonists in type 2 diabetes: a comparative review

Clinical Science, 2018

Type 2 diabetes (T2D) carries risks of both cardiovascular (CV) (myocardial infarction, stroke, and peripheral vascular disease) and microvascular (retinopathy/nephropathy/neuropathy) complications. Glucose-lowering is an effective strategy for preventing microvascular complications, but the extent to which it can reduce CV complications is less certain. Glucagon-like peptide-1 (GLP-1) agonists are potent glucose-lowering agents but also have potentially beneficial effects on other traditional (body weight, blood pressure (BP), and LDL cholesterol) and non-traditional risk factors (low grade inflammation and endothelial dysfunction). The results of four large CV outcome trials with GLP-1 agonists are now available. These have compared lixisenatide (ELIXA), liraglutide (LEADER), semaglutide (SUSTAIN-6), and long-acting exenatide (EXSCEL) with placebo and standard of care over 2–4 years; four others (including with dulaglutide and albiglutide) are ongoing. LEADER and SUSTAIN-6 have de...

Metabolic and cardiovascular benefits of GLP‑1 agonists, besides the hypoglycemic effect (Review)

Experimental and Therapeutic Medicine, 2020

Patients with type 2 diabetes exhibit higher cardiovascular risk than normal individuals. Optimal blood glucose levels are rarely achieved in diabetic patients. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have emerged as a new antidiabetic drug class with multiple metabolic effects. Some trials have evaluated their safety, but it has been recently demonstrated that this new class has cardiovascular benefits, through other mechanisms than glycemic control. The use of GLP-1RAs was associated with a significant reduction of cardiovascular and all-cause mortality, with a safe profile related to pancreatitis or thyroid cancer, as compared with placebo. This review presents the cardiovascular and metabolic benefits of GLP-1 RAs versus placebo, in patients with type 2 diabetes. Semaglutide and liraglutide demonstrated a reduction in cardiovascular events, with similar rates on cardiovascular mortality. Ongoing trials assess the cardiovascular benefits and side effects of dulaglutide treatment. Exenatide and liraglutide demonstrated the decrease of blood pressure values, weight reduction and improvement of dyslipidemia. Liraglutide induced, both in vivo and in vitro, an improvement of blood circulation, increasing the nitric oxide level and inhibiting the adhesion and procoagulant factors. Also, liraglutide demonstrated beneficial effects on cardiac remodeling after myocardial infarction, but more large trials are required. However, the international guidelines recommend using GLP-1 RAs as first-line therapy in type 2 diabetes patients with high cardiovascular risk or as first-line agents in patients intolerant to metformin. Contents 1. Introduction 2. Mechanism of action of GLP-1 hormone and its pleiotropic effects 3. Evidence of cardiovascular effects of GLP-1 agonists 4. Evidence of GLP-1 agonists on metabolism 5. Conclusions