An optical ultrafast random bit generator (original) (raw)

Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser

Optics express, 2014

This paper reports the experimental investigation of two different approaches to random bit generation based on the chaotic dynamics of a semiconductor laser with optical feedback. By computing high-order finite differences of the chaotic laser intensity time series, we obtain time series with symmetric statistical distributions that are more conducive to ultrafast random bit generation. The first approach is guided by information-theoretic considerations and could potentially reach random bit generation rates as high as 160 Gb/s by extracting 4 bits per sample. The second approach is based on pragmatic considerations and could lead to rates of 2.2 Tb/s by extracting 55 bits per sample. The randomness of the bit sequences obtained from the two approaches is tested against three standard randomness tests (ENT, Diehard, and NIST tests), as well as by calculating the statistical bias and the serial correlation coefficients on longer sequences of random bits than those used in the stand...

Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

Journal of Physics: Conference Series, 2010

Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

Physical random bit generation from chaotic solitary laser diode

Optics express, 2014

We demonstrate the physical generation of random bits at high bit rates (> 100 Gb/s) using optical chaos from a solitary laser diode and therefore without the complex addition of either external optical feedback or injection. This striking result is obtained despite the low dimension and relatively small bandwidth of the laser chaos, i.e. two characteristics that have been so far considered as limiting the performances of optical chaos-based applications. We unambiguously attribute the successful randomness at high speed to the physics of the laser chaotic polarization dynamics and the resulting growth rate of the dynamical entropy.