Electronic structure, magnetic and optic properties of spinel compound NiFe2O4 (original) (raw)
Semiconductor Science and Technology, 2020
Abstract
We report ab initio investigation of structural, electronic, magnetic and optical properties of NiFe2O4 compound. Hubbard parameters are computed for both Ni and Fe atoms. Employing GGA and GGA+U approximations and taking into consideration four possible types of atomic arrange-ments, we identify the most stable structural-magnetic configuration of the system. Interestingly, the inverse spinel NiFe2O4 compound is found to exhibit a ferrimagnetic structure. The ground state structural lattice parameters and the interatomic distances of spinel NiFe2O4 compound are comput-ed. Furthermore, band structure calculations demonstrate that NiFe2O4 compound exhibits large band gaps in both spins configurations with large magnetic moment. Energetically, Ferrite nickel favors the inverse spinel phase in which Fe and Ni cations in either octahedral or tetrahedral sites adopt the high spin configuration. We found that energy of the normal spinel is higher than that of the inverse spinel confirming that inverse spinel is the most stable structure of NiFe2O4 compound. The optical behavior of NiFe2O4 compound is characterized by calculating the real and imaginary part of the dielectric function, the absorption coefficients, the refractive index, the optical conduc-tivity and the energy loss. Optimizing structural, electronic, magnetic and optical properties of this novel compound is crucial for exploring and utilizing it for modern device applications.
Hakim BAAZIZ hasn't uploaded this paper.
Let Hakim know you want this paper to be uploaded.
Ask for this paper to be uploaded.