Time Expressions in Mental Health Records for Symptom Onset Extraction (original) (raw)

Harnessing Clinical Psychiatric Data with an Electronic Assessment Tool (OPCRIT+): The Utility of Symptom Dimensions, 2013

Progress in personalised psychiatry is dependent on researchers having access to systematic and accurately acquired symptom data across clinical diagnoses. We have developed a structured psychiatric assessment tool, OPCRIT+, that is being introduced into the electronic medical records system of the South London and Maudsley NHS Foundation Trust which can help to achieve this. In this report we examine the utility of the symptom data being collected with the tool. Cross-sectional mental state data from a mixed-diagnostic cohort of 876 inpatients was subjected to a principal components analysis (PCA). Six components, explaining 46% of the variance in recorded symptoms, were extracted. The components represented dimensions of mania, depression, positive symptoms, anxiety, negative symptoms and disorganization. As indicated by component scores, different clinical diagnoses demonstrated distinct symptom profiles characterized by wide-ranging levels of severity. When comparing the predictive value of symptoms against diagnosis for a variety of clinical outcome measures (e.g. ‘Overactive, aggressive behaviour’), symptoms proved superior in five instances (R2 range: 0.06–0.28) whereas diagnosis was best just once (R2:0.25). This report demonstrates that symptom data being routinely gathered in an NHS trust, when documented on the appropriate tool, have considerable potential for onward use in a variety of clinical and research applications via representation as dimensions of psychopathology.

RSDD-Time: Temporal Annotation of Self-Reported Mental Health Diagnoses

Self-reported diagnosis statements have been widely employed in studying language related to mental health in social media. However, existing research has largely ignored the temporality of mental health diagnoses. In this work, we introduce RSDD-Time: a new dataset of 598 manually annotated self-reported depression diagnosis posts from Reddit that include temporal information about the diagnosis. Annotations include whether a mental health condition is present and how recently the diagnosis happened. Furthermore, we include exact temporal spans that relate to the date of diagnosis. This information is valuable for various computational methods to examine mental health through social media because one’s mental health state is not static. We also test several baseline classification and extraction approaches, which suggest that extracting temporal information from self-reported diagnosis statements is challenging.

Harnessing Clinical Psychiatric Data with an Electronic Assessment Tool (OPCRIT+): The Utility of Symptom Dimensions

PLoS ONE, 2013

Progress in personalised psychiatry is dependent on researchers having access to systematic and accurately acquired symptom data across clinical diagnoses. We have developed a structured psychiatric assessment tool, OPCRIT+, that is being introduced into the electronic medical records system of the South London and Maudsley NHS Foundation Trust which can help to achieve this. In this report we examine the utility of the symptom data being collected with the tool. Cross-sectional mental state data from a mixed-diagnostic cohort of 876 inpatients was subjected to a principal components analysis (PCA). Six components, explaining 46% of the variance in recorded symptoms, were extracted. The components represented dimensions of mania, depression, positive symptoms, anxiety, negative symptoms and disorganization. As indicated by component scores, different clinical diagnoses demonstrated distinct symptom profiles characterized by wide-ranging levels of severity. When comparing the predictive value of symptoms against diagnosis for a variety of clinical outcome measures (e.g. 'Overactive, aggressive behaviour'), symptoms proved superior in five instances (R 2 range: 0.06-0.28) whereas diagnosis was best just once (R 2 :0.25). This report demonstrates that symptom data being routinely gathered in an NHS trust, when documented on the appropriate tool, have considerable potential for onward use in a variety of clinical and research applications via representation as dimensions of psychopathology.

Isolating biomarkers for symptomatic states: considering symptom-substrate chronometry

Molecular psychiatry, 2016

A long-standing goal of psychopathology research is to develop objective markers of symptomatic states, yet progress has been far slower than expected. Although prior reviews have attributed this state of affairs to diagnostic heterogeneity, symptom comorbidity and phenotypic complexity, little attention has been paid to the implications of intra-individual symptom dynamics and inter-relatedness for biomarker study designs. In this critical review, we consider the impact of short-term symptom fluctuations on widely used study designs that regress the 'average level' of a given symptom against biological data collected at a single time point, and summarize findings from ambulatory assessment studies suggesting that such designs may be sub-optimal to detect symptom-substrate relationships. Although such designs have a crucial role in advancing our understanding of biological substrates related to more stable, longer-term changes (for example, gray matter thinning during a depr...

A natural language processing approach for identifying temporal disease onset information from mental healthcare text

Scientific Reports

Receiving timely and appropriate treatment is crucial for better health outcomes, and research on the contribution of specific variables is essential. In the mental health domain, an important research variable is the date of psychosis symptom onset, as longer delays in treatment are associated with worse intervention outcomes. The growing adoption of electronic health records (EHRs) within mental health services provides an invaluable opportunity to study this problem at scale retrospectively. However, disease onset information is often only available in open text fields, requiring natural language processing (NLP) techniques for automated analyses. Since this variable can be documented at different points during a patient’s care, NLP methods that model clinical and temporal associations are needed. We address the identification of psychosis onset by: 1) manually annotating a corpus of mental health EHRs with disease onset mentions, 2) modelling the underlying NLP problem as a para...

Prediction of Inter Episodic Time for Recurring Mental Illness Using Order Statistics

Malaysian Journal of Public Health Medicine

Recurrent episodes are common across various mental disorders. Information on time to next episode, also referred as inter episodic times, provides a valuable tool for planning and evaluating the health outcomes of treatment in patients and developing effective preventive maintenance therapy. The objective is to obtain the prediction interval for the future inter episodic time when the number of previous episodes for a patient is small and inter episodic times are dependent. A data of 28 patients with a history of 3 or more recurring episodes of illness is extracted from a retrospective data of 146 patients diagnosed with mental and behavioral disorders. The prediction interval for time to occurrence of next episode is obtained using order statistics assuming that it will follow the order followed by previous inter episodic times. The validity of the results is verified using simulation studies with data generated using covariance structure of the real dataset. From the simulation s...

Identifying the Presence and Timing of Discrete Mood States Prior to Therapy

2019

The present study tested a novel, person-specific method of identifying discrete mood profiles from time-series data, and examined the degree to which these profiles could be predicted by time-based variables, specifically, trends, cycles, day of the week, and time of day. We analyzed ambulatory data from 45 individuals with mood and anxiety disorders prior to therapy. Data were collected four-times-daily for at least 30 days. Latent class analysis was applied person-by-person to discretize each individual’s continuous multivariate time series of rumination, worry, fear, anger, irritability, anhedonia, hopelessness, depressed mood, and avoidance. That is, each time point was classified according to its unique blend of emotional states, and latent classes representing discrete mood profiles were identified for each participant. We found that the modal number of latent classes per person was two (mean = 2.59, median = 2), with a range of one to five classes. We then used elastic net r...

Correction: Harnessing Clinical Psychiatric Data with an Electronic Assessment Tool (OPCRIT+): The Utility of Symptom Dimensions

PLoS ONE, 2013

Progress in personalised psychiatry is dependent on researchers having access to systematic and accurately acquired symptom data across clinical diagnoses. We have developed a structured psychiatric assessment tool, OPCRIT+, that is being introduced into the electronic medical records system of the South London and Maudsley NHS Foundation Trust which can help to achieve this. In this report we examine the utility of the symptom data being collected with the tool. Cross-sectional mental state data from a mixed-diagnostic cohort of 876 inpatients was subjected to a principal components analysis (PCA). Six components, explaining 46% of the variance in recorded symptoms, were extracted. The components represented dimensions of mania, depression, positive symptoms, anxiety, negative symptoms and disorganization. As indicated by component scores, different clinical diagnoses demonstrated distinct symptom profiles characterized by wide-ranging levels of severity. When comparing the predictive value of symptoms against diagnosis for a variety of clinical outcome measures (e.g. 'Overactive, aggressive behaviour'), symptoms proved superior in five instances (R 2 range: 0.06-0.28) whereas diagnosis was best just once (R 2 :0.25). This report demonstrates that symptom data being routinely gathered in an NHS trust, when documented on the appropriate tool, have considerable potential for onward use in a variety of clinical and research applications via representation as dimensions of psychopathology.

Time series models of symptoms in schizophrenia

Psychiatry Research, 2002

The symptom courses of 84 schizophrenia patients (mean age: 24.4 years; mean previous admissions: 1.3; 64% males) of a community-based acute ward were examined to identify dynamic patterns of symptoms and to investigate the relation between these patterns and treatment outcome. The symptoms were monitored by systematic daily staff ratings using a scale composed of three factors: psychoticity, excitement, and withdrawal. Patients showed moderate to high symptomatic improvement documented by effect size measures. Each of the 84 symptom trajectories was analyzed by time series methods using vector autoregression (VAR) that models the day-to-day interrelations between symptom factors. Multiple and stepwise regression analyses were then performed on the basis of the VAR models. Two VAR parameters were found to be associated significantly with favorable outcome in this exploratory study: 'withdrawal preceding a reduction of psychoticity' as well as 'excitement preceding an increase of withdrawal'. The findings were interpreted as generating hypotheses about how patients cope with psychotic episodes. ᮊ