Clinical and immunological effects of anti-TNF therapy in systemic lupus erythematosus (SLE) (original) (raw)

Anti-Ro/SSA antibodies in rheumatoid arthritis (RA)

Arthritis Research & Therapy, 2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Antineutrophil cytoplasmic antibodies in synovial fluid and in serum of patients with rheumatoid arthritis and other types of synovitis

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Adjustment in anti-TNF therapy after initial response: long-term follow-up in patients with rheumatoid arthritis

2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Citrullination of synovial proteins in murine models of rheumatoid arthritis

Arthritis & Rheumatism, 2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Presence of anti-RNP-A and anti-RNP-C antibodies is inversely associated with renal symptoms of systemic lupus erythematosus

Arthritis Research & Therapy, 2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Changes in rheumatoid factor reflect the inflammatory response (CRP and ESR) to infliximab treatment

Arthritis Research & Therapy

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Influence of anti-TNF therapy on monocyte gene expression in rheumatoid arthritis

2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

High-molecular-weight PEG precipitates from synovial fluid induce more TNF-α than those from serum of RA patients, which is in contrast to patients with other inflammatory arthritides

Arthritis Research & Therapy, 2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides

Circulating bioactive TNF in rheumatoid arthritis patients treated with infliximab: link to clinical response

2003

Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides