Clinical and immunological effects of anti-TNF therapy in systemic lupus erythematosus (SLE) (original) (raw)
Related papers
Anti-Ro/SSA antibodies in rheumatoid arthritis (RA)
Arthritis Research & Therapy, 2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Citrullination of synovial proteins in murine models of rheumatoid arthritis
Arthritis & Rheumatism, 2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Arthritis Research & Therapy, 2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Changes in rheumatoid factor reflect the inflammatory response (CRP and ESR) to infliximab treatment
Arthritis Research & Therapy
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Influence of anti-TNF therapy on monocyte gene expression in rheumatoid arthritis
2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
Arthritis Research & Therapy, 2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides
2003
Heterogeneity and multifactoriality complicate diagnostics and our understanding of pathogenesis of rheumatoid arthritis (RA). The only accepted serologic parameter (rheumatoid factor [RF]) is not disease specific, nor are any of several novel RA autoantibodies. We aimed at identifying profiles instead of individual autoreactivities allowing for unambiguous prediction of RA. Selected RA autoantigens were tested by ELISA (RF and anti-cyclic citrullinated peptide [anti-CCP]) or Western blot (heavy-chain-binding protein [BiP], heterogeneous ribonucleoprotein particle A2 [RA33/ hnRNP A2], calpastatin and calreticulin). Antibody reactivities were assayed from serum samples of 149 RA patients and 132 patients with other rheumatic diseases and from synovial fluids (SF) (58 RA, 65 non-RA). No single autoreactivity was sufficient for unambiguous prediction of RA. Frequencies of multiparameter profiles consisting of 3, 4, 5 and 6 autoreactivites were determined. Fifteen six-parameter serum profiles were exclusively expressed in RA patients, representing a cumulative sensitivity of 59%. Twelve SF profiles were exclusively expressed in 64% of RA patients. The self-learning classification algorithm CLASSIF1 was capable of accurately predicting RA when these profiles were present. Data profile analysis of RF/CCP/BiP/calpastatin/calreticulin/RA33 provided specific discrimination of 64% of RA. Most importantly, RA specific profiles were observed in 64% of patients with early disease (<12 months). For the first time, the accurate prediction of the class RA has been achieved by the use of multiparametric autoreactivity profiles. Because of early expression in disease, these profiles make it possible to start a disease-modifying therapy long before irreversible bone and joint destruction may develop. Additional RA-specific profiles are required to cover the entire group of RA patients. 2 Investigation of the reactivity patterns of antifilaggrin antibodies in sera and synovial fluids from patients with rheumatoid arthritis using citrullinated synthetic peptides