Bacterial-type Phosphoenolpyruvate Carboxylase (PEPC) Functions as a Catalytic and Regulatory Subunit of the Novel Class-2 PEPC Complex of Vascular Plants (original) (raw)

Bacterial‐and plant‐type phosphoenolpyruvate carboxylase polypeptides interact in the hetero‐oligomeric Class‐2 PEPC complex of developing castor oil seeds

The Plant …, 2007

Two classes of phosphoenolpyruvate carboxylase (PEPC) sharing the same 107-kDa catalytic subunit (p107) were previously purified from developing castor oil seed (COS) endosperm. The association of p107 with an immunologically unrelated 64-kDa polypeptide (p64) causes pronounced physical and kinetic differences between the Class-1 PEPC p107 homotetramer and Class-2 PEPC p107/p64 hetero-octamer. Tryptic peptide sequencing matched p64 to the deduced C-terminal half of several bacterial-type PEPCs (BTPCs) of vascular plants. Immunoblots probed with anti-(COS p64 peptide or p107)-IgG established that: (i) BTPC exists in vivo as an approximately 118-kDa polypeptide (p118) that is rapidly truncated to p64 by an endogenous cysteine endopeptidase during incubation of COS extracts on ice, and (ii) mature and germinated COS contain Class-1 PEPC and p107, but no detectable Class-2 PEPC nor p118. Non-denaturing PAGE, in-gel PEPC activity staining and immunoblotting of developing COS extracts demonstrated that p118 and p107 are subunits of the nonproteolysed approximately 910-kDa Class-2 PEPC complex. As total PEPC activity of clarified COS extracts was unaffected following p118 truncation to p64, the BTPC p118 may function as a regulatory rather than catalytic subunit of the Class-2 PEPC. Moreover, recombinant AtPPC3 and AtPPC4 (Arabidopsis orthologs of COS p107 and p118) expressed as active and inactive PEPCs, respectively. Cloning of cDNAs encoding p118 (RcPpc4) and p107 (RcPpc3) confirmed their respective designation as bacterial-and plant-type PEPCs. Levels of RcPpc3 and RcPpc4 transcripts generally mirrored the respective amounts of p107 and p118. The collective findings provide insights into the molecular features and functional significance of vascular plant BTPCs. a Determined via CLUSTALX (ver. 1.8) alignment of COS BTPC and p107 with other vascular plant, bacterial and algal PEPC sequences (http:// bips.u-strasbg.fr/fr/Documentation/ClustalX). b As computed by ExPASy M r prediction programs.

Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds

Biochemical Journal, 2011

PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate metabolism. Two distinct oligomeric PEPC classes were discovered in developing COS (castor oil seeds). Class-1 PEPC is a typical homotetramer of 107 kDa PTPC (plant-type PEPC) subunits, whereas the novel 910-kDa Class-2 PEPC hetero-octamer arises from a tight interaction between Class-1 PEPC and 118 kDa BTPC (bacterial-type PEPC) subunits. Mass spectrometric analysis of immunopurified COS BTPC indicated that it is subject to in vivo proline-directed phosphorylation at Ser425. We show that immunoblots probed with phosphorylation site-specific antibodies demonstrated that Ser425 phosphorylation is promoted during COS development, becoming maximal at stage IX (maturation phase) or in response to depodding. Kinetic analyses of a recombinant, chimaeric Class-2 PEPC containing phosphomimetic BTPC mutant subunits (S425D) indicated that Ser425 phosphorylation results in significant BTPC inhibition by: (i) increasing its Km(PEP) 3-fold, (ii) reducing its I50 (L-malate and L-aspartate) values by 4.5- and 2.5-fold respectively, while (iii) decreasing its activity within the physiological pH range. The developmental pattern and kinetic influence of Ser425 BTPC phosphorylation is very distinct from the in vivo phosphorylation/activation of COS Class-1 PEPC's PTPC subunits at Ser11. Collectively, the results establish that BTPC's phospho-Ser425 content depends upon COS developmental and physiological status and that Ser425 phosphorylation attenuates the catalytic activity of BTPC subunits within a Class-2 PEPC complex. To the best of our knowledge, this study provides the first evidence for protein phosphorylation as a mechanism for the in vivo control of vascular plant BTPC activity.

The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs

Biochemical Journal, 2011

PEPC [PEP (phosphoenolpyruvate) carboxylase] is a tightly controlled enzyme located at the core of plant C-metabolism that catalyses the irreversible β-carboxylation of PEP to form oxaloacetate and Pi. The critical role of PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. PEPC also fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and nitrogen assimilation. An impressive array of strategies has evolved to co-ordinate in vivo PEPC activity with cellular demands for C4–C6 carboxylic acids. To achieve its diverse roles and complex regulation, PEPC belongs to a small multigene family encoding several closely related PTPCs (plant-type PEPCs), along with a distantly related BTPC (bacterial-type PEPC). PTPC genes encode ~110-kDa polypeptides containing conserved serine-phosphorylation and lysine-...

Manipulating PEPC levels in plants

Journal of Experimental Botany, 2002

This review examines the current understanding of the structural, functional and regulatory properties of C4 and C3 forms of higher plant phosphoenolpyru- vate carboxylase. The emphasis is on the interactive metabolic and post-translational controls acting on the enzyme in the physiological context of C4 photo- synthesis and the anaplerotic pathway. A brief over- view is given concerning the recent developments

Regulatory Phosphorylation of Bacterial-type PEP Carboxylase by the Ca2+-Dependent Protein Kinase RcCDPK1 in Developing Castor Oilseeds

Plant physiology, 2017

Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled cytosolic enzyme situated at a crucial branch point of central plant metabolism. In developing castor oil seeds (COS) (Ricinus communis) a novel, allosterically-desensitized 910-kD Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kD plant-type PEPC and 118-kD bacterial-type (BTPC) subunits. The native Ca2+-dependent protein kinase (CDPK) responsible for in vivo inhibitory phosphorylation of Class-2 PEPC's BTPC subunit's at Ser-451 was highly purified from COS and identified as RcCDPK1 (XP_002526815) by mass spectrometry. Heterologously expressed RcCDPK1 catalyzed Ca2+-dependent, inhibitory phosphorylation of BTPC at Ser-451 while exhibiting a: (i) pair of Ca2+ binding sites with identical dissociation constants of 5.03 µM, (ii) Ca2+-dependent electrophoretic mobility shift , and (iii) marked Ca2+-independent hydrophobicity. Pull-down experiments established the Ca2+-dependent inte...

Transcript profiling indicates a widespread role for bacterial-type phosphoenolpyruvate carboxylase in malate-accumulating sink tissues

Journal of Experimental Botany, 2017

Phosphoenolpyruvate carboxylase (PEPC) is an important regulatory enzyme situated at a key branch point of central plant metabolism. Plant genomes encode several plant-type PEPC (PTPC) isozymes, along with a distantly related bacterial-type PEPC (BTPC). BTPC is expressed at high levels in developing castor oil seeds where it tightly interacts with co-expressed PTPC polypeptides to form unusual hetero-octameric Class-2 PEPC complexes that are desensitized to allosteric inhibition by L-malate. Analysis of RNA-Seq and microarray transcriptome datasets revealed two distinct patterns of tissue-specific BTPC expression in vascular plants. Species such as Arabidopsis thaliana, strawberry, rice, maize, and poplar mainly exhibited pollen-or floral-specific BTPC expression. By contrast, BTPC transcripts were relatively abundant in developing castor, cotton, and soybean seeds, cassava tubers, as well as immature tomato, cucumber, grape, and avocado fruit. Immunoreactive 118 kDa BTPC polypeptides were detected on immunoblots of cucumber and tomato fruit extracts. Co-immunoprecipitation established that as in castor, BTPCs physically interact with endogenous PTPCs to form Class-2 PEPC complexes in tomato and cucumber fruit. We hypothesize that Class-2 PEPCs simultaneously maintain rapid anaplerotic PEP carboxylation and respiratory CO 2 refixation in diverse, biosynthetically active sinks that accumulate high malate levels.

The bacterial-type phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serine-451

FEBS Letters, 2012

Intrinsically disordered region Mass spectrometry Oil seed metabolism Phosphoenolpyruvate carboxylase (PEPC) Regulatory enzyme phosphorylation Ricinus communis (castor oil plant) a b s t r a c t Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.