Molecular Cloning, Sequence, and Expression of Mouse Flavin‐Containing Monooxygenases 1 and 5 (FMO1 and FMO5) (original) (raw)
Related papers
Characterization and Structure-Function Studies of Human Liver Flavin Monooxygenase Isozyme 3 (FMO3
The activity of the flaving-containing monooxygenase (FMO EC 1.14.13.8) can be modulated by a number of nitrogencontaining compounds in a manner that is both isoform and effector-dependent. We showed that the direction (activation or inbihiton) and extent of modulation can also be dependent on substrate concentration. The native human liver FMO3 and arg 433 mutant FMO3 catalyze the methimazole reaction with similar Km values. However, the mutant FMO3-catalyzed reaction was affected differently by high concentration of imipramine, imipramine causing inhibition of activity. Our results suggest that the response of FMO3 to imipramine involves a distribution of compounds between two sites which is regulated by structural features.
Drug Metabolism and Disposition, 2002
The expression of flavin-containing monooxygenases (FMOs) in dog liver microsomes was suggested by a high methimazole Soxidase activity. When the reaction was catalyzed by dog liver microsomes, apparent V max and K m values were 6.3 nmol/min/mg and 14 M, respectively. This reaction was highly inhibited (73%) in the presence of imipramine, but it was also weakly affected by trimethylamine, suggesting the involvement of different isoforms. The sequences of dog FMO1 and FMO3 were obtained by reverse transcription-polymerase chain reaction and 5/3 terminal extension. The cDNAs of dog FMO1 and dog FMO3 encode proteins of 532 amino acids, which contain the NADPH-and FAD-binding sites. The dog FMO1 amino acid sequence is 88, 86, and 89% identical to sequences of human, rabbit, and pig FMO1, respectively. The dog FMO3 amino acid sequence is 83, 84, and 82% identical to sequences of human, rabbit, and rat FMO3, respectively. Dog FMO1 and dog FMO3 exhibited only 56% identities. The FMO1 and FMO3 recombinant proteins and the FMO1 and FMO3 microsomal proteins migrated with the same mobility (56 kDa), as determined in SDS-polyacrylamide gel electrophoresis and immunoblotting. By Western blotting, dog FMO1 and dog FMO3 were detected in microsomes from liver and lung but not in kidney microsomes. By Northern blotting, the probe for FMO1 specifically hybridized a 2.6-kilobase (kb) transcript in liver and lung samples only. The probe for FMO3 hybridized two transcripts of approximately 3 and 4.2 kb in the liver and lung samples.
Archives of Biochemistry and Biophysics, 2001
The sequence of rat FMO3 was obtained by RT-PCR and 5/3 terminal extension. Complete cDNA was amplified, cloned, and sequenced. The cDNA encodes a protein of 531 amino acids which contains the NADPHand FAD-binding sites and a hydrophobic carboxyl terminus characteristic of FMOs. This sequence is 81, 81, and 91% identical to sequences of human, rabbit, and mouse FMO3, respectively, and 60% identical to rat FMO1. Rat FMO3 was expressed in Escherichia coli. The recombinant protein and the native protein purified from rat liver microsomes migrated with the same mobility (56 kDa) as determined in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. Recombinant rat FMO3 showed activities of methimazole S-oxidation, and NADPH oxidation associated with the Nor S-oxidation of trimethylamine and thioacetamide, in good concordance with those reported for human FMO3. When probed with rat FMO3 cDNA (bases 201 to 768), a strong signal corresponding to the 2.3-kb FMO3 transcript was detected in RNA samples from rat liver and kidney while a weak signal was observed with lung RNA samples. In contrast, the probe did not hybridize with any RNA from brain, adipose tissue, or muscle.
Human Hepatic Flavin-Containing Monooxygenases 1 (FMO1) and 3 (FMO3) Developmental Expression
Pediatric Research, 2002
The flavin-containing monooxygenases (FMOs) are important for the metabolism of numerous therapeutics and toxicants. Six mammalian FMO genes (FMO1-6) have been identified, each exhibiting developmental and tissue-and species-specific expression patterns. Previous studies demonstrated that human hepatic FMO1 is restricted to the fetus whereas FMO3 is the major adult isoform. These studies failed to describe temporal expression patterns, the precise timing of the FMO1/FMO3 switch, or potential control mechanisms. To address these questions, FMO1 and FMO3 were quantified in microsomal fractions from 240 human liver samples representing ages from 8 wk gestation to 18 y using Western blotting. FMO1 expression was highest in the embryo (8-15 wk gestation; 7.8 Ϯ 5.3 pmol/mg protein). Low levels of FMO3 expression also were detectable in the embryo, but not in the fetus. FMO1 suppression occurred within 3 d postpartum in a process tightly coupled to birth, but not gestational age. The onset of FMO3 expression was highly variable, with most individuals failing to express this isoform during the neonatal period. FMO3 was detectable in most individuals by 1-2 y of age and was expressed at intermediate levels until 11 y (12.7 Ϯ 8.0 pmol/mg protein). These data suggest that birth is necessary, but not sufficient for the onset of FMO3 expression. A gender-independent increase in FMO3 expression was observed from 11 to 18 y of age (26.9 Ϯ 8.6 pmol/mg protein). Finally, 2-to 20-fold interindividual variation in FMO1 and FMO3 protein levels were observed, depending on the age bracket.
Journal of Biological Chemistry, 1998
Flavin-containing monooxygenases (FMOs) are NADPH-dependent flavoenzymes that catalyze the oxidation of heteroatom centers in numerous drugs and xenobiotics. FMO2, or "pulmonary" FMO, one of five forms of the enzyme identified in mammals, is expressed predominantly in lung and differs from other FMOs in that it can catalyze the N-oxidation of certain primary alkylamines. We describe here the isolation and characterization of cDNAs for human FMO2. Analysis of the sequence of the cDNAs and of a section of the corresponding gene revealed that the major FMO2 allele of humans encodes a polypeptide that, compared with the orthologous protein of other mammals, lacks 64 amino acid residues from its C terminus. Heterologous expression of the cDNA revealed that the truncated polypeptide was catalytically inactive. The nonsense mutation that gave rise to the truncated polypeptide, a C 3 T transition in codon 472, is not present in the FMO2 gene of closely related primates, including gorilla and chimpanzee, and must therefore have arisen in the human lineage after the divergence of the Homo and Pan clades. Possible mechanisms for the fixation of the mutation in the human population and the potential significance of the loss of functional FMO2 in humans are discussed.
Expression and Characterization of a Modified Flavin-containing Monooxygenase 4 from Humans
Journal of Biological Chemistry, 1996
The inability to obtain flavin-containing monooxygenase 4 (FMO4) in heterologous systems has hampered efforts to characterize this isoform of the FMO gene family. Neither the human nor the rabbit ortholog of FMO4, each of which has been cloned and sequenced, has been expressed. Attempts to achieve expression of FMO4 have been made with Escherichia coli, baculovirus, yeast, and COS systems. The cDNAs encoding FMO4 have extended coding regions compared with those encoding other FMO isoforms. The derived amino acid sequences of FMO1,-2,-3, and-5 from all species examined contain about the same number of residues (531-535 residues), whereas the derived sequences of human and rabbit FMO4 contain 558 and 555 residues, respectively. We have investigated whether the elongation of the FMO4 coding region is related to the inability to achieve expression. The cDNA encoding human FMO4 has been modified by a single base change that introduces a stop codon at the consensus position. This modification allows for expression in E. coli. Lack of expression of intact FMO4 is caused by a problem that occurs following transcription, a problem that is overcome completely by relocation of the stop codon 81 bases to 5 of its normal position. Truncated FMO4 is expressed as an active enzyme with characteristics typical of an FMO isoform. Possible functional changes resulting from altering the 3-end of an FMO were investigated with human FMO3. Elongation of the coding region of the FMO3 cDNA to the next available stop codon (FMO3*) resulted in the expression of an enzyme with properties very similar to those of unmodified FMO3. Elongation of FMO3 lowered the level of expression in E. coli but did not eliminate it. As with FMO4, the difference in expression levels between FMO3 and elongated FMO3 (FMO3*) appears to be related to translation rather than transcription. The functional characteristics of FMO3 and FMO3* are not significantly different. The flavin-containing monooxygenase (FMO, 1 EC 1.14.13.8) gene family encodes a minimum of five isoforms that catalyze
Drug Metabolism and Disposition, 2009
Catalytically active human flavin-containing monooxygenase isoform 2 (FMO2.1) is encoded by an allele detected only in individuals of African or Hispanic origin. Genotyping and haplotyping studies indicate that S195L and N413K occasionally occur secondary to the functional FMO2*1 allele encoding reference protein Gln472. Sulfoxygenation under a range of conditions reveals the role these alterations may play in individuals expressing active FMO2 and provides insight into FMO structure. Expressed S195L lost rather than gained activity as pH was increased or when cholate was present. The activity of S195L was mostly eliminated after heating at 45°C for 5 min in the absence of NADPH, but activity was preserved if NADPH was present. By contrast, Gln472 was less sensitive to heat, a response not affected by NADPH. A major consequence of the S195L mutation was a mean 12-fold increase in K m for NADPH compared with Gln472. Modeling an S213L substitution, the equivalent site, in the structural model of FMO from the Methylophaga bacterium leads to disruption of interactions with NADP ؉. N413K had the same pattern of activity as Gln472 in response to pH, cholate, and magnesium, but product formation was always elevated by comparison. N413K also lost more activity when heated than Gln472; however, NADPH attenuated this loss. The major effects of N413K were increases in velocity and k cat compared with Gln472. Although these allelic variants are expected to occur infrequently as mutations to the FMO2*1 allele, they contribute to our overall understanding of mammalian FMO structure and function.
Biochemical Pharmacology, 2004
The cell-, tissue-, sex-and developmental stage-specific expression profiles of five members of the flavin-containing monooxygenase (FMO) family, FMO1, 2, 3, 4 and 5, were investigated in 129/SV mice, using isoform-specific antisense RNA probes. In situ hybridization localized FMO1 and 5 mRNAs to the perivenous, and FMO 2, 3 and 4 mRNAs to the periportal, regions of the liver. In kidney, each FMO mRNA is localized to the distal and proximal tubules and collecting ducts; FMO1 mRNA is present also in the glomerulus. In lung, FMO1 and 3 mRNAs are expressed in the terminal bronchiole, and FMO1 mRNA also in the alveoli. FMO1 mRNA is present in neurons of the cerebrum and in the choroid plexus. RNase protection assays showed that the most abundant isoform in newborn liver, lung, kidney and brain, and in adult lung and kidney is FMO1, but in adult liver FMO5 is present in greatest amounts. In liver, lung and kidney, expression of Fmo1, 3 and 5 peaks at 3 or 5 weeks of age, but in the brain, Fmo1 expression is greatest in newborns. In the kidney, FMO5 mRNA abundance is fourfold greater in males than in females, at all stages of development. Our results demonstrate that Fmo1, 2, 3, 4 and 5 exhibit distinct cell-, tissue-, sex-and developmental stage-specific patterns of expression. # 2004 Elsevier Inc. All rights reserved.