Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations (original) (raw)
2011, Advances in Ceramics - Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment
2. Structural bioceramics based in zirconia 2.1 Zirconia Zircon is a shiny gray-white metal, which may look blue-black when in powder form. Zirconia is an oxide which has a high tensile strength, high hardness and corrosion resistance. It is not found as a pure oxide in nature. The main sources of zirconium are zirconate (ZrO 2-SiO 2 , ZrSiO 4) and baddelyite (ZrO 2), and most of the material used is chemically extracted from these two minerals. The zirconate is more abundant, but less pure, requiring significant processing to get zirconia. (Picone & Maccauro, 1999). Baddelyite already contains levels of zirconia ranging from 96.5% to 98.5%. As this mineral shows significant levels, it is known as a source of extreme purity in obtaining zirconium metal and its compounds. Zirconium dioxide (ZrO 2) resulting from baddelyite, which is also known as www.intechopen.com Advances in Ceramics-Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment 398 zirconia, is a course oxide that presents a monoclinic crystal structure at room temperature. However, the powder can be purified and processed synthetically at high temperatures, forming a cubic structure called cubic zirconia. The resulting material is hard, optically flawless and translucent, usually used for making precious stones or gas sensors, P. ex. (Koutayas et al., 2009). 2.2 Phases of zirconia (monoclic, tetragonal and cubic) The spatial arrangement of the atoms in zirconia is characterized by distinct crystallographic structures, characterizing a property known as polymorphism. Its three phases, or crystal structures, are characterized by specific geometry and dimensional parameters: monoclinic, tetragonal and cubic. (Fig. 1a,b,c). Pure zirconia has a monoclinic structure at room temperature, which is stable up to 1170°C. Between this temperature and 2370°C, tetragonal zirconia is formed, while cubic zirconia is formed at temperatures above 2370°C. After processing, and depending on the cooling process, the tetragonal phase becomes monoclinic at about 970°C. Due to polymorphism, pure zirconia cannot be used at elevated temperatures due to a large volume change (3-5%) which occurs during cooling to the monoclinic phase. This change is sufficient to exceed the elastic and fracture limits, resulting in cracks and flaws in ceramics. (Denry & Kelly, 2008). The transformation of the tetragonal to monoclinic phases can be employed to improve the mechanical properties of zirconia, especially its tenacity. The mechanism involved is known as a booster from transformation. This transformation is martensitic in nature, therefore, a process that occurs by shear without diffusion, ie the atomic position change occurs abruptly at a speed close to the speed of sound propagation in solids. The reverse transition, ie the monoclinic > tetragonal transformation and occurs at approximately 1170° C, while the tetragonal > monoclinic transformation, which occurs during cooling, is observed between 850 and 1000°C, depending on the strain energy. Therefore, the manufacturing of components of pure zirconia is not possible due to spontaneous failure. The addition of stabilizing oxides is important because it allows the maintenance of the tetragonal form at room temperature. (Hannink et al., 2000). Different oxides, such as yttrium oxide (Y 2 O 3), calcium oxide (CaO) or magnesium oxide (MgO), can be added to zirconia to stabilize it, allowing the tetragonal form to exist at room temperature after sintering. The addition of varying amounts of stabilizers allows the formation of partially or fully stabilized zirconia which, when combined with changes in processes, may result in ceramics with exceptional properties such as high flexural strength and fracture toughness, high hardness, excellent chemical resistance and good conductivity ions. A fully stabilized zirconia is obtained by adding sufficient amounts of stabilizing oxides, such as 16mol% magnesia (MgO), 16mol% of limestone (CaO) or 8 mol% yttria (Y 2 O 3). Since the partial stabilization of zirconia is obtained with the same oxides, but in smaller amounts (eg 2 mol% to 3mol% yttria), a multiphase structure is created, which usually consists of tetragonal and cubic zirconia majority / monoclinic precipitated in small amounts. (Picone & Maccauro, 1999). The transformation of tetragonal zirconia into monoclinic is a phenomenon influenced by temperature, vapor, particle size, micro-and macrostructure of the material, and also by the concentration of stabilizing oxides. The critical particle size for the partially stabilized zirconia to be maintained in the tetragonal form at room temperature is 0.2µm to 1μm (for compositions ranging from 2% to 3 mol% yttria), because, under 0.2 micrometres, the transformation to the monoclinic phase is not possible. (Kelly & Denry, 2008). www.intechopen.com Application of Zirconia in Dentistry: Biological, Mechanical and Optical Considerations 399 2.2.1 Monoclinic zirconia The natural form of zirconia, known as baddelyite, contains approximately 2% HfO 2 (hafnium oxide), which is very similar to zirconia in structure and chemical properties. ZR 4 + ions have a coordination number of seven for the oxygen ions occupying tetrahedral interstices, with the average distance between the zirconia ion and three of the seven oxygen ions is 2.07Å. Since the average distance between the zirconium ion and four oxygen ions is 2.21Å, in the structure, one of the angles (134.3°) differs significantly from the tetrahedral value (109.5°). Thus, the structure of the oxygen ion is not planar and a curve occurs in the plane of the four oxygens, and the plane of three oxygens is completely erratic. (Hannink et al., 2000) 2.2.2 Tetragonal zirconia Zirconia in its tetragonal phase has the form of a straight prism with rectangular sides. Ions ZR 4 + have a coordination number of eight, where the shape once again appears distorted due to the fact that four oxygen ions are at a distance of 2.065Å in the form of a tetrahedron plan, and four others are at a distance of 2.455Å in a tetrahedron that is elongated and rotated 90°. (Vagkopoulou et al, 2009).