Phylogeographic studies of plants in China: Advances in the past and directions in the future (original) (raw)

Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora

Molecular Phylogenetics and Evolution, 2011

The Sino-Japanese Floristic Region (SJFR) of East Asia harbors the most diverse of the world's temperate flora, and was the most important glacial refuge for its Tertiary representatives ('relics') throughout Quaternary ice-age cycles. A steadily increasing number of phylogeographic studies in the SJFR of mainland China and adjacent areas, including the Qinghai-Tibetan-Plateau (QTP) and Sino-Himalayan region, have documented the population histories of temperate plant species in these regions. Here we review this current literature that challenges the oft-stated view of the SJFR as a glacial sanctuary for temperate plants, instead revealing profound effects of Quaternary changes in climate, topography, and/or sea level on the current genetic structure of such organisms. There are three recurrent phylogeographic scenarios identified by different case studies that broadly agree with longstanding biogeographic or palaeo-ecological hypotheses: (i) postglacial re-colonization of the QTP from (south-)eastern glacial refugia; (ii) population isolation and endemic species formation in Southwest China due to tectonic shifts and river course dynamics; and (iii) long-term isolation and species survival in multiple localized refugia of (warm-) temperate deciduous forest habitats in subtropical (Central/East/South) China. However, in four additional instances, phylogeographic findings seem to conflict with a priori predictions raised by palaeo-data, suggesting instead: (iv) glacial in situ survival of some hardy alpine herbs and forest trees on the QTP platform itself; (v) long-term refugial isolation of (warm-)temperate evergreen taxa in subtropical China; (vi) 'cryptic' glacial survival of (cool-)temperate deciduous forest trees in North China; and (vii) unexpectedly deep (Late Tertiary/early-to-mid Pleistocene) allopatric-vicariant differentiation of disjunct lineages in the East China-Japan-Korea region due to past sea transgressions. We discuss these and other consequences of the main phylogeographic findings in light of palaeo-environmental evidence, emphasize notable gaps in our knowledge, and outline future research prospects for disentangling the evolution and biogeographic history of the region's extremely diverse temperate flora.

Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau

Frontiers in genetics, 2014

The Qinghai-Tibetan Plateau (QTP) is the highest and one of the most extensive plateaus in the world. Phylogenetic, phylogeographic, and ecological studies support plant diversifications on the QTP through multiple mechanisms such as allopatric speciation via geographic isolation, climatic oscillations and divergences, pollinator-mediated isolation, diploid hybridization and introgression, and allopolyploidy. These mechanisms have driven spectacular radiations and/or species diversifications in various groups of plants such as Pedicularis L., Saussurea DC., Rhododendron L., Primula L., Meconopsis Vig., Rhodiola L., and many lineages of gymnosperms. Nevertheless, much work is needed toward understanding the evolutionary mechanisms of plant diversifications on the QTP. Well-sampled biogeographic analyses of the QTP plants in the broad framework of the Northern Hemisphere as well as the Southern Hemisphere are still relatively few and should be encouraged in the next decade. This paper...

Spatial phylogenetics of the native woody plant species in Hainan, China

Ecology and Evolution, 2021

To better identify biodiversity hotspots for conservation on Hainan Island, a tropical island in southern China, we assessed spatial variation in phylogenetic diversity and species richness using 18,976 georeferenced specimen records and a newly reconstructed molecular phylogeny of 957 native woody plants. Within this framework, we delineated bioregions based on vegetation composition and mapped areas of neoendemism and paleoendemism to identify areas of priority for conservation. Our results reveal that the southwest of Hainan is the most important hot spot for endemism and plant diversity followed by the southeast area. The distribution of endemic species showed a scattered, rather than clustered, pattern on the island. Based on phylogenetic range‐weighted turnover metrics, we delineated three major vegetational zones in Hainan. These largely correspond to natural secondary growth and managed forests (e.g., rubber and timber forests) in central Hainan, old‐growth forests and natur...

Genetic diversity hotspots and refugia identifid by mapping multi-plant species haplotype diversity in China

Israel Journal of Plant Sciences, 2019

Historical processes during the Quaternary are likely to have left a signature on the geographical distribution of intraspecifi genetic variation. In particular, high genetic uniqueness could be expected within glacial refugia for multiple species. We aimed to test this for plants in China and whether multi-species hotspots of genetic diversity are good indicators of glacial refugia in this region. From chloroplast DNA haplotype data for 116 species we calculated two local genetic diversity metrics for each species: haplotype genetic richness and genetic uniqueness. From these two, only uniqueness could reliably identify refugia, whereas richness may indicate either glacial refugia or areas recolonized by genetic lineages from diffrent refugia in the postglacial period. Our results suggest the occurrence of numerous cryptic refugia and their likely importance in the maintenance and evolution of the Chinese flra, and indicate that an approach that locates geographic hotspots of genetic diversity data can reliably identify refugia.

Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China

Journal of Systematics and Evolution, 2014

To better understand the elevational pattern of phylogenetic structure shown by alpine taxa and the underlying causes, we analyzed the phylogenetic structure of each elevational belt of alpine plants in the Hengduan Mountains Region, measured by net related index (NRI) and net nearest taxon index (NTI). We found both the indices of phylogenetic diversity indicated that alpine plants tended to show phylogenetic overdispersion at low elevational belts, implying that the distribution of alpine plants in these belts was mainly determined by interspecific competition. Alpine plants at higher elevational belts tended to phylogenetic clustering indicated by NRI, and NTI revealed phylogenetic clustering at the belts between 4300 m and 5500 m, which presumably suggested environment filtering and rapid speciation. Above 5500 m, NTI indicated that the phylogenetic structure became random again, perhaps due to the low intensity of filtering and the large distances between plants at the top of the scree slopes. We concluded that phylogenetic structure was, indeed, influenced by the environmental filter, interspecies interaction, rapid speciation during the uplift of the Qinghai-Tibet Plateau, and distance between plants.

Phylogeography of Sophora davidii (Leguminosae) across the ‘Tanaka-Kaiyong Line’, an important phytogeographic boundary in Southwest China

Molecular Ecology, 2013

The 'Tanaka-Kaiyong Line' (TKL) is a major phytogeographic boundary in Southwest China, separating East Asia's Sino-Himalayan and Sino-Japanese Floras. However, little is known about the importance of this boundary in promoting intraspecific phylogeographic subdivision and divergence. Using chloroplast (cpDNA) and nuclear-intron (nDNA) sequence data, we reconstructed the population history of Sophora davidii, a droughttolerant riparian shrub widely distributed on either side of the TKL. Specifically, we aimed at testing two long-standing explanations for possible vicariant events across the TKL: (i) Late Pliocene (c. 3 Ma) geological uplift of the eastern Qinghai-Tibetan Plateau (QTP) or (ii) a sharp environmental gradient associated with the establishment of different monsoon regimes on either side of the TKL during the (Late) Pleistocene. Our genealogical analyses detected a major west-east split in cpDNA, geographically largely consistent with the TKL, and dated to c. 1.28 Ma (95% HPD: 0.21-2.96 Ma), hence postdating the latest phase of eastern QTP uplift. Furthermore, integrating cpDNA phylogeographic patterns with mismatch analyses, we found multiple refugial isolation and long-term demographic stability of populations in the west (Hengduan Mountain Range) compared with extensive range expansions in the east, possibly during the last glacial period(s) and followed by differentiation into regional sublineages (southeast: Yunnan-Guizhou Plateau vs. northeast: Qinling Mts./Loess Plateau). Although nuclear differentiation was less marked, the geographical pattern of nDNA haplotypes provided some further indication of the species' eastward expansion, possibly from source populations located just east of the TKL (lower Jinshajiang region). Overall, the present data reject the geological (tectonic) explanation for the TKL and, instead, provide supportive evidence for its role as a climatically driven barrier to present-day plant dispersal. In addition, our study highlights changing temperatures and vegetation types during the last glacial period(s), along with aspects of regional topography, to be important determinants of the glacial eastward expansion of S. davidii. In consequence, our study lends support to a 'glacial out-of-Hengduan Mts'. hypothesis for the xerophytic-riparian flora of Southwest China, which in turn is inconsistent with the traditional view of the TKL as a 'classical' vicariant-biogeographic boundary.

Phylogeography of Pinus tabulaeformis Carr. (Pinaceae), a dominant species of coniferous forest in northern China

Molecular Ecology, 2008

How coniferous trees in northern China changed their distribution ranges in response to Quaternary climatic oscillations remains largely unknown. Here we report a study of the phylogeography of Pinus tabulaeformis, an endemic and dominant species of coniferous forest in northern China. We examined sequence variation of maternally inherited, seed-dispersed mitochondrial DNA (mtDNA) (nad5 intron 1 and nad4/3-4) and paternally inherited, pollen-and seed-dispersed chloroplast DNA (cpDNA) (rpl16 and trnS-trnG) within and among 30 natural populations across the entire range of the species. Six mitotypes and five chlorotypes were recovered among 291 trees surveyed. Population divergence was high for mtDNA variation (G ST = 0.738, N ST = 0.771) indicating low levels of seed-based gene flow and significant phylogeographical structure (N ST > G ST , P < 0.05). The spatial distribution of mitotypes suggests that five distinct population groups exist in the species: one in the west comprising seven populations, a second with a north-central distribution comprising 15 populations, a third with a southern and easterly distribution comprising five populations, a fourth comprising one central and one western population, and a fifth comprising a single population located in the north-central part of the species' range. Each group apart from the fourth group is characterized by a distinct mitotype, with other mitotypes, if present, occurring at low frequency. It is suggested, therefore, that most members of each group apart from Group 4 are derived from ancestors that occupied different isolated refugia in a previous period of range fragmentation of the species, possibly at the time of the Last Glacial Maximum. Possible locations for these refugia are suggested. A comparison of mitotype diversity between northern and southern subgroups within the north-central group of populations (Group 2) showed much greater uniformity in the northern part of the range both within and between populations. This could indicate a northward migration of the species from a southern refugium in this region during the postglacial period, although alternative explanations cannot be ruled out. Two chlorotypes were distributed across the geographical range of the species, resulting in lower levels of among-population chlorotype variation. The geographical pattern of variation for all five chlorotypes provided some indication of the species surviving past glaciations in more than one refugium, although differentiation was much less marked, presumably due to the greater dispersal of cpDNA via pollen.