Regulation of Autophagy through TORC1 and mTORC1 (original) (raw)
Related papers
Nutrient-dependent regulation of autophagy through the target of rapamycin pathway
Biochemical Society Transactions - BIOCHEM SOC TRANS, 2009
In response to nutrient deficiency, eukaryotic cells activate macroautophagy, a degradative process in which proteins, organelles and cytoplasm are engulfed within unique vesicles called autophagosomes. Fusion of these vesicles with the endolysosomal compartment leads to breakdown of the sequestered material into amino acids and other simple molecules, which can be used as nutrient sources during periods of starvation. This process is driven by a group of autophagy-related (Atg) proteins, and is suppressed by TOR (target of rapamycin) signalling under favourable conditions. Several distinct kinase complexes have been implicated in autophagic signalling downstream of TOR. In yeast, TOR is known to control autophagosome formation in part through a multiprotein complex containing the serine/threonine protein kinase Atg1. Recent work in Drosophila and mammalian systems suggest that this complex and its regulation by TOR are conserved in higher eukaryotes, and that Atg1 has accrued additional functions including feedback regulation of TOR itself. TOR and Atg1 also control the activity of a second kinase complex containing Atg6/Beclin 1, Vps (vacuolar protein sorting) 15 and the class III PI3K (phosphoinositide 3-kinase) Vps34. During autophagy induction, Vps34 activity is mobilized from an early endosomal compartment to nascent autophagic membranes, in a TOR-and Atg1-responsive manner. Finally, the well-known TOR substrate S6K (p70 ribosomal protein S6 kinase) has been shown to play a positive role in autophagy, which may serve to limit levels of autophagy under conditions of continuously low TOR activity. Further insight into these TOR-dependent control mechanisms may support development of autophagy-based therapies for a number of pathological conditions. Key words: autophagy-related gene 1/Unc51-like kinase 1 (Atg1/Ulk1), autophagy, cell growth, Drosophila, target of rapamycin (TOR), vacuolar protein sorting 34 (Vps34). Abbreviations used: Atg, autophagy-related gene; ESCRT, endosomal sorting complex required for transport; PI3K, phosphoinositide 3-kinase; S6K, p70 ribosomal protein S6 kinase; TOR, target of rapamycin; Ulk1, Unc51-like kinase 1; Vps, vacuolar protein sorting.
Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator
International Journal of Molecular Sciences
The target of rapamycin (TOR) is an evolutionarily-conserved serine/threonine kinase that senses and integrates signals from the environment to coordinate developmental and metabolic processes. TOR senses nutrients, hormones, metabolites, and stress signals to promote cell and organ growth when conditions are favorable. However, TOR is inhibited when conditions are unfavorable, promoting catabolic processes such as autophagy. Autophagy is a macromolecular degradation pathway by which cells degrade and recycle cytoplasmic materials. TOR negatively regulates autophagy through phosphorylation of ATG13, preventing activation of the autophagy-initiating ATG1-ATG13 kinase complex. Here we review TOR complex composition and function in photosynthetic and non-photosynthetic organisms. We also review recent developments in the identification of upstream TOR activators and downstream effectors of TOR. Finally, we discuss recent developments in our understanding of the regulation of autophagy ...
Leucine regulates autophagy via acetylation of the mTORC1 component raptor
Nature Communications, 2020
Macroautophagy (“autophagy”) is the main lysosomal catabolic process that becomes activated under nutrient-depleted conditions, like amino acid (AA) starvation. The mechanistic target of rapamycin complex 1 (mTORC1) is a well-conserved negative regulator of autophagy. While leucine (Leu) is a critical mTORC1 regulator under AA-starved conditions, how Leu regulates autophagy is poorly understood. Here, we describe that in most cell types, including neurons, Leu negatively regulates autophagosome biogenesis via its metabolite, acetyl-coenzyme A (AcCoA). AcCoA inhibits autophagy by enhancing EP300-dependent acetylation of the mTORC1 component raptor, with consequent activation of mTORC1. Interestingly, in Leu deprivation conditions, the dominant effects on autophagy are mediated by decreased raptor acetylation causing mTORC1 inhibition, rather than by altered acetylation of other autophagy regulators. Thus, in most cell types we examined, Leu regulates autophagy via the impact of its m...
Journal of Biological Chemistry, 2013
Background: Lysosomes are required for autophagic degradation, which can be suppressed by lysosome inhibitors. Results: Inhibition of lysosome function resulted in autophagy activation via down-regulation of MTORC1. Conclusion: Lysosomes can affect autophagy initiation in addition to its role in autophagy degradation. Significance: The finding expands lysosome function to include regulation of autophagy activation and indicates a dual effect of lysosome inhibitors in autophagy. Autophagy can be activated via MTORC1 down-regulation by amino acid deprivation and by certain chemicals such as rapamycin, torin, and niclosamide. Lysosome is the degrading machine for autophagy but has also been linked to MTORC1 activation through the Rag/RRAG GTPase pathway. This association raises the question of whether lysosome can be involved in the initiation of autophagy. Toward this end, we found that niclosamide, an MTORC1 inhibitor, was able to inhibit lysosome degradation and increase lysosomal permeability. Niclosamide was ineffective in inhibiting MTORC1 in cells expressing constitutively activated Rag proteins, suggesting that its inhibitory effects were targeted to the Rag-MTORC1 signaling system. This places niclosamide in the same category of bafilomycin A 1 and concanamycin A, inhibitors of the vacuolar H ؉-ATPase, for its dependence on Rag GTPase in suppression of MTORC1. Surprisingly, classical lysosome inhibitors such as chloroquine, E64D, and pepstatin A were also able to inhibit MTORC1 in a Rag-dependent manner. These lysosome inhibitors were able to activate early autophagy events represented by ATG16L1 and ATG12 puncta formation. Our work established a link between the functional status of the lysosome in general to the Rag-MTORC1 signaling axis and autophagy activation. Thus, the lysosome is not only required for autophagic degradation but also affects autophagy activation. Lysosome inhibitors can have a dual effect in suppressing autophagy degradation and in initiating autophagy. Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved mechanism by which cytoplasmic materials can be transported to and degraded in the lysosome. Autophagy serves to provide nutrients to starving cells or to remove superfluous subcellular organelles, aggregated proteins, or intracellular pathogens (1). As an important pathophysiological regulation mechanism during development, aging, and pathogenesis, autophagy can be induced or suppressed by a variety of signaling events. However, many of the signaling pathways have not been well defined. In general, autophagy can be induced by MTOR complex 1 (MTORC1) 2-dependent pathway or-independent pathway (2, 3). MTORC1 negatively regulates autophagic initiation, and many agents can thus induce autophagy by suppressing MTORC1 (2). A commonly used physiological autophagy stimulus is the deprivation of nutrients such as amino acids, which inactivates MTORC1. Rapamycin and Torin 1 are well defined small molecule chemicals that inhibit MTORC1 (4). Niclosamide is another chemical recently found to be able to induce autophagy and inhibit MTORC1 (5). The latter was attributed to the ability of niclosamide to cause cytoplasmic acidification by releasing protons from lysosomes (6). The lysosome has recently been found to play a uniquely important role in MTORC1 activation (7). Activation of MTORC1 by amino acids depends on the Rag/RRAG family of GTPase, which is found on the lysosomal membrane (8, 9). The Rag proteins are composed of RagA, RagB, RagC, and RagD.
mTOR and autophagy: a dynamic relationship governed by nutrients and energy
Seminars in cell & developmental biology, 2014
Mechanistic target of rapamycin (mTOR) functions as a key homeostatic regulator of cell growth and orchestrates whether anabolic or catabolic reactions are favoured. mTOR complex 1 (mTORC1) manages multiple biosynthetic pathways and promotes cell growth when nutrients are in plentiful supply. Many advances have been made over the last decade on nutrient sensing centred on mTORC1. Recent research reveals that mTORC1 maintains nutrient homeostasis through lysosomal biogenesis and autophagic processes. Cells utilise autophagy to recycle damaged or unwanted organelles and macromolecules and in so doing, generate energy and recover precursor building blocks necessary for normal growth. It is clear that mTOR and autophagy are closely integrated within cells, where defects in signalling through both pathways are known to drive the onset of a range of human diseases, such as cancer and neurodegenerative disease. This review focuses on the dynamic signalling interplay between mTOR and autoph...
Nature Cell Biology, 2013
Autophagy is important in the basal or stress-induced clearance of bulk cytosol, damaged organelles, pathogens and selected proteins by specific vesicles, the autophagosomes. Following mTOR (mammalian target of rapamycin) inhibition, autophagosome formation is primed by the ULK1 and the beclin-1-Vps34-AMBRA1 complexes, which are linked together by a scaffold platform, the exocyst. Although several regulative steps have been described along this pathway, few targets of mTOR are known, and the cross-talk between ULK1 and beclin 1 complexes is still not fully understood. We show that under non-autophagic conditions, mTOR inhibits AMBRA1 by phosphorylation, whereas on autophagy induction, AMBRA1 is dephosphorylated. In this condition, AMBRA1, interacting with the E3-ligase TRAF6, supports ULK1 ubiquitylation by LYS-63-linked chains, and its subsequent stabilization, self-association and function. As ULK1 has been shown to activate AMBRA1 by phosphorylation, the proposed pathway may act as a positive regulation loop, which may be targeted in human disorders linked to impaired autophagy.
Reconstitution of leucine-mediated autophagy via the mTORC1-Barkor pathway in vitro
Autophagy, 2012
Supplementation of branched chain amino acids, especially leucine, is critical to improve malnutrition by regulating protein synthesis and degradation. Emerging evidence has linked leucine deprivation induced protein breakdown to autophagy. In this study, we aimed to establish a cell-free assay recapitulating leucine-mediated autophagy in vitro and dissect its biochemical requirement. We found that in a cell-free assay, membrane association of Barkor/Atg14(L), a specific autophagosome-binding protein, is suppressed by cytosol from nutrient-rich medium and such suppression is released by nutrient deprivation. We also showed that rapamycin could efficiently reverse the suppression of nutrient rich cytosol, suggesting an essential role of mTORC1 in autophagy inhibition in this cell-free system. Furthermore, we demonstrated that leucine supplementation in the cultured cells blocks Barkor puncta formation and autophagy activity. Hence, we establish a novel cell-free assay recapitulating leucine-mediated autophagy inhibition in an mTORC1-dependent manner; this assay will help us to dissect the regulation of amino acids in autophagy and related human metabolic diseases.