Targeting DNA quadruplexes with distamycin A and its derivatives: An ITC and NMR study (original) (raw)

Selective binding of distamycin a derivative to G-quadruplex structure [d(TGGGGT)]4

2010

Guanine-rich nucleic acid sequences can adopt G-quadruplex structures stabilized by layers of four Hoogsteen-paired guanine residues. Quadruplex-prone sequences are found in many regions of human genome and in the telomeres of all eukaryotic organisms. Since small molecules that target G-quadruplexes have been found to be effective telomerase inhibitors, the identification of new specific ligands for G-quadruplexes is emerging as a promising approach to develop new anticancer drugs. Distamycin A is known to bind to AT-rich sequences of duplex DNA, but it has recently been shown to interact also with G-quadruplexes. Here, isothermal titration calorimetry (ITC) and NMR techniques have been employed to characterize the interaction between a dicationic derivative of distamycin A (compound 1) and the [d(TGGGGT)] 4 quadruplex. Additionally, to compare the binding behaviour of netropsin and compound 1 to the same target, a calometric study of the interaction between netropsin and [d(TGGGGT)] 4 has been performed. Experiments show that netropsin and compound 1 are able to bind to [d(TGGGGT)] 4 with good affinity and comparable thermodynamic profiles. In both cases the interactions are entropically driven processes with a small favourable enthalpic contribution. Interestingly, the structural modifications of compound 1 decrease the affinity of the ligand toward the duplex, enhancing the selectivity.

NMR-Based Model of a Telomerase-Inhibiting Compound Bound to G-Quadruplex DNA

Biochemistry, 1998

The single-stranded (TTAGGG) n tail of human telomeric DNA is known to form stable G-quadruplex structures. Optimal telomerase activity requires the nonfolded single-stranded form of the primer, and stabilization of the G-quadruplex form is known to interfere with telomerase binding. We have identified 3,4,9,10-perylenetetracarboxylic diimide-based ligands as potent inhibitors of human telomerase by using a primer extension assay that does not use PCR-based amplification of the telomerase primer extension products. A set of NMR titrations of the ligand into solutions of G-quadruplexes using various oligonucleotides related to human telomeric DNA showed strong and specific binding of the ligand to the G-quadruplex. The exchange rate between bound and free DNA forms is slow on the NMR time scale and allows the unequivocal determination of the binding site and mode of binding. In the case of the 5′-TTAGGG sequence, the ligand-DNA complex consists of two quadruplexes oriented in a tailto-tail manner with the ligand sandwiched between terminal G4 planes. Longer telomeric sequences, such as TTAGGGTT, TTAGGGTTA, and TAGGGTTA, form 1:1 ligand-quadruplex complexes with the ligand bound at the GT step by a threading intercalation mode. On the basis of 2D NOESY data, a model of the latter complex has been derived that is consistent with the available experimental data. The determination of the solution structure of this telomerase inhibitor bound to telomeric quadruplex DNA should help in the design of new anticancer agents with a unique and novel mechanism of action.

Structural and Thermodynamic Studies of the Interaction of Distamycin A with the Parallel Quadruplex Structure [d(TGGGGT)] 4

Journal of The American Chemical Society, 2007

The complex between distamycin A and the parallel DNA quadruplex [d(TGGGGT)]4 has been studied by 1 H NMR spectroscopy and isothermal titration calorimetry (ITC). To unambiguously assert that distamycin A interacts with the grooves of the quadruplex [d(TGGGGT)]4, we have analyzed the NMR titration profile of a modified quadruplex, namely [d(TGG Me GGT)]4, and we have applied the recently developed differential frequency-saturation transfer difference (DF-STD) method, for assessing the ligand-DNA binding mode. The three-dimensional structure of the 4:1 distamycin A/[d(TGGGGT)]4 complex has been determined by an in-depth NMR study followed by dynamics and mechanics calculations. All results unequivocally indicate that distamycin molecules interact with [d(TGGGGT)] 4 in a 4:1 binding mode, with two antiparallel distamycin dimers that bind simultaneously two opposite grooves of the quadruplex. The affinity between distamycin A and [d(TGGGGT)] 4 enhances (∼10-fold) when the ratio of distamycin A to the quadruplex is increased. In this paper we report the first three-dimensional structure of a groovebinder molecule complexed to a DNA quadruplex structure.

Tight Binding of the Antitumor Drug Ditercalinium to Quadruplex DNA

ChemBioChem, 2002

The structural selectivity of the DNA-binding antitumor drug ditercalinium was investigated by competition dialysis with a series of nineteen different DNA substrates. The 7H-pyridocarbazole dimer was found to bind to double-stranded DNA with a preference for GC-rich species but can in addition form stable complexes with triplex and quadruplex structures. The preferential interaction of the drug with four-stranded DNA structures was independently confirmed by electrospray mass spectrometry and a detailed analysis of the binding reaction was performed by surface plasmon resonance (SPR) spectroscopy. The BIAcore SPR study showed that the kinetic parameters for the interaction of ditercalinium with the human telomeric quadruplex sequence are comparable to those measured with a duplex sequence. Slow association and dissociation were observed with both the quadruplex and duplex structures. The newly discovered preferential binding of ditercalinium to the antiparallel quadruplex sequence d(AG 3 [T 2 AG 3 ] 3) provides new perspectives for the design of drugs that can bind to human telomeres.

Synthesis of distamycin A polyamides targeting G-quadruplex DNA

Organic & Biomolecular Chemistry, 2006

A number of amide-linked oligopyrroles based on distamycin molecules have been synthesized by solid-state methods, and their interactions with a human intramolecular G-quadruplex have been measured by a melting procedure. Several of these molecules show an enhanced ratio of quadruplex vs. duplex DNA binding compared to distamycin itself, including one with a 2,5-disubstituted pyrrole group. Quadruplex affinity increases with the number of pyrrole groups, and it is suggested that this is consistent with a mixed groove/G-quartet stacking binding mode.

Design and study of telomerase inhibitors based on G-quadruplex ligands

Biopolymers and Cell, 2013

In this review we have summarized the results of our recent research on telomerase inhibitors and G-quadruplex DNA ligands. A series of potential enzyme inhibitors were synthesized and studied. These compounds were based on tricyclic heteroaromatic systems (thiazolobenzimidazoles phenazines, acridones), amino-substituted cyanines and natural and synthetic porphyrins and their metalocomplexes. A number of compounds, including cyanines and especially porphyrin derivatives and conjugates, were found to efficiently inhibit telomerase at low micromolar concentrations in the in vitro TRAP assay. Porphyrins demonstrated antiproliferative activity in tumor cell cultures at micro-and nanomolar concentrations. Spectral-fluorescent and electrophoretic experiments were performed to investigate the interaction of ligands with duplex and quadruplex DNA, and in many cases binding mode was established. Convenient G-octet model of G-quadruplex was developed to study the ligand-target binding using quantum-chemical methods. QM/MM hybrid approach ONIUM2 was employed to model the interaction of small molecules with Tel22 quadruplex DNA.

New dimeric carbazole-benzimidazole mixed ligands for the stabilization of human telomeric G-quadruplex DNA and as telomerase inhibitors. A remarkable influence of the spacer

Organic & biomolecular chemistry, 2015

The development of G-quadruplex (G4) DNA binding small molecules has become an important strategy for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of G4 DNA even at a lower concentration of the stabilizing K(+) ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic re...

Shooting for Selective Druglike G-Quadruplex Binders: Evidence for Telomeric DNA Damage and Tumor Cell Death

Journal of Medicinal Chemistry, 2012

Targeting of DNA secondary structures, such as G-quadruplexes, is now considered an appealing opportunity for drug intervention in anticancer therapy. So far, efforts made in the discovery of chemotypes able to target G-quadruplexes mainly succeeded in the identification of a number of polyaromatic compounds featuring end-stacking binding properties. Against this general trend, we were persuaded that the G-quadruplex grooves can recognize molecular entities with better drug-like and selectivity properties. From this idea, a set of small molecules was identified and the structural features responsible for G-quadruplex recognition were delineated. These compounds were demonstrated to have enhanced affinity and selectivity for the G-quadruplex over the duplex structure. Their ability to induce selective DNA damage at telomeric level and to induction of apoptosis and senescence on tumor cells is herein experimentally proven.