Ecological niche divergence associated with species and populations differentiation in Erythrophleum (Fabaceae, Caesalpinioideae) (original) (raw)

Congruent phylogeographic patterns of eight tree species in Atlantic Central Africa provide insights on the past dynamics of forest cover

Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.

Phylogenomic data reveal how a climatic inversion and glacial refugia shape patterns of diversity in an African rain forest tree species

The world's second largest expanse of tropical rain forest is in Central Africa and contains incredible species diversity. Population genetic studies have consistently revealed significant structure across central African rain forest plants, in particular a North-South genetic discontinuity close to the equator at the level of a climatic inversion. Here, we take a phylogeographic approach using 351 nuclear markers in 112 individuals across the distribution of the African rain forest tree species Annickia affinis (Annonaceae). We show for the first time that the North-South divide is the result of a single major colonisation event across the climatic inversion from an ancestral population located in Gabon. We suggest that environmental differences across the inversion and associated trait divergence may have contributed to this phylogenetic discontinuity. We find evidence for inland dispersal, predominantly in northern areas, and variable demographic histories among genetic clust...

Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover

Molecular Ecology, 2014

Cycles of Quaternary climatic change are assumed to be major drivers of African rainforest dynamics and evolution. However, most hypotheses on past vegetation dynamics relied on palaeobotanical records, an approach lacking spatial resolution, and on current patterns of species diversity and endemism, an approach confounding history and environmental determinism. In this context, a comparative phylogeographical study of rainforest species represents a complementary approach because Pleistocene climatic fluctuations may have left interpretable signatures in the patterns of genetic diversity within species. Using 1274 plastid DNA sequences from eight tree species (Afrostyrax kamerunensis, A. lepidophyllus, Erythrophleum suaveolens, Greenwayodendron suaveolens, Milicia excelsa, Santiria trimera, Scorodophloeus zenkeri and Symphonia globulifera) sampled in 50 populations of Atlantic Central Africa (ACA), we averaged divergence across species to produce the first map of the region synthesizing genetic distinctiveness and standardized divergence within and among localities. Significant congruence in divergence was detected mostly among five of the eight species and was stronger in the northern ACA. This pattern is compatible with a scenario of past forest fragmentation and recolonization whereby forests from eastern Cameroon and northeastern Gabon would have been more affected by past climatic change than those of western Cameroon (where one or more refugia would have occurred). By contrast, southern ACA (Gabon) displayed low congruence among species that may reflect less drastic past forest fragmentation or a more complex history of vegetation changes. Finally, we also highlight the potential impact of current environmental barriers on spatial genetic structures.

Armstrong K., Stone G., Nicholls J., Valderrama-Escallon E., Anderberg A., Smedmark J., Gautier L., Naciri Y., Milne R. & Richardson J.E. (2014) Patterns of diversification amongst tropical regions compared: a case study in Sapotaceae. Frontiers in Genetics, 5, 362

Frontiers in Genetics

Species diversity is unequally distributed across the globe, with the greatest concentration occurring in the tropics. Even within the tropics, there are significant differences in the numbers of taxa found in each continental region. Manilkara is a pantropical genus of trees in the Sapotaceae comprising c. 78 species. Its distribution allows for biogeographic investigation and testing of whether rates of diversification differ amongst tropical regions. The age and geographical origin of Manilkara are inferred to determine whether Gondwanan break-up, boreotropical migration or long distance dispersal have shaped its current disjunct distribution. Diversification rates through time are also analyzed to determine whether the timing and tempo of speciation on each continent coincides with geoclimatic events. Bayesian analyses of nuclear (ITS) and plastid (rpl32-trnL, rps16-trnK , and trnS-trnFM) sequences were used to reconstruct a species level phylogeny of Manilkara and related genera in the tribe Mimusopeae. Analyses of the nuclear data using a fossil-calibrated relaxed molecular clock indicate that Manilkara evolved 32-29 million years ago (Mya) in Africa. Lineages within the genus dispersed to the Neotropics 26-18 Mya and to Asia 28-15 Mya. Higher speciation rates are found in the Neotropical Manilkara clade than in either African or Asian clades. Dating of regional diversification correlates with known palaeoclimatic events. In South America, the divergence between Atlantic coastal forest and Amazonian clades coincides with the formation of drier Cerrado and Caatinga habitats between them. In Africa diversification coincides with Tertiary cycles of aridification and uplift of the east African plateaux. In Southeast Asia dispersal may have been limited by the relatively recent emergence of land in New Guinea and islands further east c. 10 Mya.

Little ecological divergence associated with speciation in two African rain forest tree genera

2011

Background The tropical rain forests (TRF) of Africa are the second largest block of this biome after the Amazon and exhibit high levels of plant endemism and diversity. Two main hypotheses have been advanced to explain speciation processes that have led to this high level of biodiversity: allopatric speciation linked to geographic isolation and ecological speciation linked to ecological gradients.

Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

Scientific Reports

Global climate change is proceeding at an alarming rate with major ecological and genetic consequences for biodiversity, particularly in drylands. The response of species to climate change may differ between intraspecific genetic groups, with major implications for conservation. We used molecular data from 10 nuclear and two chloroplast genomes to identify phylogeographic groups within 746 individuals from 29 populations of Senegalia senegal, a savannah tree species in sub-Saharan Africa. Three phylogroups are identified corresponding to Sudano-Sahelian, Zambezian and Southern African biogeographic regions in West, East and Southern Africa. Genetic diversity was highest in Southern and Zambesian and lowest in the Sudano-Sahelian phylogroups. Using species distribution modeling, we infer highly divergent future distributions of the phylogroups under three climate change scenarios. Climate change will lead to severe reductions of distribution area of the genetically diverse Zambezian ...