Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges (original) (raw)
Related papers
Stem Cells and Development, 2012
The nonobese diabetic (NOD) mouse is a classical animal model for autoimmune type 1 diabetes (T1D), closely mimicking features of human T1D. Thus, the NOD mouse presents an opportunity to test the effectiveness of induced pluripotent stem cells (iPSCs) as a therapeutic modality for T1D. Here, we demonstrate a proof of concept for cellular therapy using NOD mouse-derived iPSCs (NOD-iPSCs). We generated iPSCs from NOD mouse embryonic fibroblasts or NOD mouse pancreas-derived epithelial cells (NPEs), and applied directed differentiation protocols to differentiate the NOD-iPSCs toward functional pancreatic beta cells. Finally, we investigated whether the NPE-iPSC-derived insulin-producing cells could normalize hyperglycemia in transplanted diabetic mice. The NOD-iPSCs showed typical embryonic stem cell-like characteristics such as expression of markers for pluripotency, in vitro differentiation, teratoma formation, and generation of chimeric mice. We developed a method for stepwise differentiation of NOD-iPSCs into insulin-producing cells, and found that NPE-iPSCs differentiate more readily into insulin-producing cells. The differentiated NPE-iPSCs expressed diverse pancreatic beta cell markers and released insulin in response to glucose and KCl stimulation. Transplantation of the differentiated NPE-iPSCs into diabetic mice resulted in kidney engraftment. The engrafted cells responded to glucose by secreting insulin, thereby normalizing blood glucose levels. We propose that NOD-iPSCs will provide a useful tool for investigating genetic susceptibility to autoimmune diseases and generating a cellular interaction model of T1D, paving the way for the potential application of patient-derived iPSCs in autologous beta cell transplantation for treating diabetes.
Folia Histochemica et Cytobiologica
Diabetes mellitus is a chronic disease that affects hundreds of millions of people worldwide. Type 1 diabetes (T1D) is characterized by the lack of pancreatic β-cells that had been destroyed as a result of an autoimmune response. Therefore, in patients with T1D, the replacement therapy with functional β-cells derived from extrinsic sources could be a preferable option as compared to insulin treatment. Unfortunately, successful transplantation of whole pancreata or pancreatic islets into patients with diabetes is available only to a fraction of them due to the scarcity of donors. The rapid development of cell reprogramming methods made it possible to generate large numbers of human β-like cells derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs). This review describes the basis of in vitro differentiaton protocols of β-like cells that mimic changes of the main signaling pathways during the key stages of human and murine pancreas development, which are described first. During the last 15 years it was found that there are no important differences between hESCs and hiPSCs in their differentiation capacities into β-like cells and the expression profiles of the key transcription factors. The in vitro produced β-like cells are immature as demonstrated by functional tests in rodents and single-cell transcriptomic and proteomic analyses. After the transplantation of the β cell progenitors into immunocompromised diabetic mice, a few weeks have to pass before the increased insulin levels in response to glucose load appear. There is a continuous progress in the development of open-type encapsulation devices which allow the vascularization of the transplanted cells and protect them against host's immune cells. The results of the first clinical trial of human partially differentiated endocrine progenitors of β cells transplanted into patients with T1D will be published in the year 2019. It is hoped that further improvements in the techniques of large-scale generation of the β-like cells derived from human pluripotent stem cells will bring us closer to their clinical application as a form of cause-directed therapy for people with diabetes.
Derivation of insulin-producing beta-cells from human pluripotent stem cells
The review of diabetic studies : RDS, 2014
Human embryonic stem cells have been advanced as a source of insulin-producing cells that could potentially replace cadaveric-derived islets in the treatment of type 1 diabetes. To this end, protocols have been developed that promote the formation of pancreatic progenitors and endocrine cells from human pluripotent stem cells, encompassing both embryonic stem cells and induced pluripotent stem cells. In this review, we examine these methods and place them in the context of the developmental and embryological studies upon which they are based. In particular, we outline the stepwise differentiation of cells towards definitive endoderm, pancreatic endoderm, endocrine lineages and the emergence of functional beta-cells. In doing so, we identify key factors common to many such protocols and discuss the proposed action of these factors in the context of cellular differentiation and ongoing development. We also compare strategies that entail transplantation of progenitor populations with t...
Journal of Biological Engineering, 2017
Recent advances in the expansion and directed pancreatogenic differentiation of human pluripotent stem cells (hPSCs) have intensified efforts to generate functional pancreatic islet cells, especially insulin-secreting β-cells, for cell therapies against diabetes. However, the consistent generation of glucose-responsive insulin-releasing cells remains challenging. In this article, we first present basic concepts of pancreatic organogenesis, which frequently serves as a basis for engineering differentiation regimens. Next, past and current efforts are critically discussed for the conversion of hPSCs along pancreatic cell lineages, including endocrine β-cells and α-cells, as well as exocrine cells with emphasis placed on the later stages of commitment. Finally, major challenges and future directions are examined, such as the identification of factors for in vivo maturation, large-scale culture and post processing systems, cell loss during differentiation, culture economics, efficiency, and efficacy and exosomes and miRNAs in pancreatic differentiation.
Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells
Journal of Diabetes, 2016
Background: Insulin-secreting cells have been generated from human embryonic or induced pluripotent stem cells (iPSCs) by mimicking developmental processes. However, these cells do not always secrete glucose-responsive insulin, one of the most important characteristics of pancreatic β-cells. We focused on the importance of endodermal differentiation from human iPSCs in order to obtain functional pancreatic β-cells. Methods: A six-stage protocol was established for the differentiation of human iPSCs to pancreatic β-cells using defined culture media without feeders or serum. The effects of CHIR99021, a selective glycogen synthase kinase-3β inhibitor, were examined in the presence of fibroblast growth factor 2, activin, and bone morphogenetic protein 4 (FAB) during definitive endodermal induction by immunostaining for SRY (sex determining region Y)-box 17 (SOX17) and Forkhead box protein A2 (FOXA2). Insulin secretion was compared between the last stage of monolayer culture and spheroid culture conditions. Cultured cells were transplanted under kidney capsules of streptozotocin-diabetic nonobese diabetic-severe combined immunodeficiency mice, and blood glucose levels were measured once a week. Immunohistochemical analyses were performed 4 and 12 weeks after transplantation. Results: Addition of CHIR99021 (3 μmol/L) in the presence of FAB for 2 days improved endodermal cell viability, maintaining the high SOX17-positive rate. Spheroid formation after the endocrine progenitor stage showed more efficient insulin secretion than did monolayer culture. After cell transplantation, diabetic mice had lower blood glucose levels, and islet-like structures were detected in vivo. Conclusion: Functional pancreatic β-cells were generated from human iPSCs. Induction of definitive endoderm and spheroid formation may be key steps for producing these cells.
Stem cell-based strategies for the treatment of type 1 diabetes mellitus
Expert Opinion on Biological Therapy, 2011
Importance of the field-Beta cell regeneration and beta cell preservation are two promising therapeutic approaches for the management of patients with Type 1 diabetes (T1D). Stem cellbased strategies to address the problems of shortage in beta cells, autoimmune and alloimmune responses have become an area of intense study. Areas covered in this review-This review focuses on the progress that has been made in obtaining functional, insulin-producing cells from various types of stem/progenitor cells, including the current knowledge on the immunomodulatory roles of hematopoietic stem cell and multipotent stromal cell in the therapies for T1D. What the reader will gain-A broad overview of recent advancements in this field is provided. The hurdles that remain in the path of using stem cell-based strategies for the treatment of T1D and possible approaches to overcome these challenges are discussed. Take home message-Stem cell-based strategies hold great promise for the treatment of T1D. In spite of the progress that has been made over the last decade, a number of obstacles and concerns need to be cleared before widespread clinical application is possible. In particular, the mechanism of ESC and iPSC-derived beta cell maturation in vivo is poorly understood.
Stem Cell Therapies for Type I Diabetes
Autoimmune Diseases - Contributing Factors, Specific Cases of Autoimmune Diseases, and Stem Cell and Other Therapies, 2012
This manuscript is supported by funding from the University of California and the California Institute for Regenerative Medicine (RN1-00554-1). 5. References Ahlgren, U., J. Jonsson, et al. (1996). "The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice." Development 122(5): 1409-16. Ai, C., I. Todorov, et al. (2007). "Human marrow-derived mesodermal progenitor cells generate insulin-secreting islet-like clusters in vivo." Stem Cells Dev 16(5): 757-70. Alipio, Z., W. Liao, et al. (2010). "Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells."
Acta Diabetologica, 2015
Aims New sources of insulin-secreting cells are strongly required for the cure of diabetes. Recent successes in differentiating embryonic stem cells, in combination with the discovery that it is possible to derive human induced pluripotent stem cells (iPSCs) from somatic cells, have raised the possibility that patient-specific beta cells might be derived from patients through cell reprogramming and differentiation. In this study, we aimed to obtain insulinproducing cells from human iPSCs and test their ability to secrete insulin in vivo. Methods Human iPSCs, derived from both fetal and adult fibroblasts, were differentiated in vitro into pancreascommitted cells and then transplanted into immunodeficient mice at two different stages of differentiation (posterior foregut and endocrine cells). Results IPSCs were shown to differentiate in insulin-producing cells in vitro, following the stages of pancreatic organogenesis. At the end of the differentiation, the production of INSULIN mRNA was highly increased and 5 ± 2.9 % of the cell population became insulin-positive. Terminally differentiated cells also produced C-peptide in vitro in both basal and stimulated conditions. In vivo, mice transplanted with pancreatic cells secreted human C-peptide in response to glucose stimulus, but transplanted cells were observed to lose insulin secretion capacity during the time. At histological evaluation, the grafts resulted to be composed of a mixed population of cells containing mature pancreatic cells, but also pluripotent and some neuronal cells. Conclusion These data overall suggest that human iPSCs have the potential to generate insulin-producing cells and that these differentiated cells can engraft and secrete insulin in vivo.
Current trends in type 1 diabetes mellitus--stem cells and beyond
JOURNAL OF PAKISTAN MEDICAL ASSOCIATION, 2007
Search for a cure for type-1 diabetes mellitus has lead to many avenues of research, all having the same objective: to replace the lost beta cells and prevent their further destruction by the immune system. Transplantation of islets of Langerhans seems closer to achieving this goal with the recent introduction of new improved immunosuppressive protocols including monoclonal antibodies against the T-lymphocytes. But the need for acquiring beta cells in large numbers rather limits this approach. With the recent advancement in stem cell technology, it may be possible to gather enough stem cells for transplantation purposes. In this regard, embryonic stem cells have shown the greatest promise due to their capacity for unlimited proliferation and differentiation into any cell type. This review discusses the current direction of research regarding diabetes mellitus type-1, while explaining the progress being made in stem cell usage in finding a cure for the disease.