First molecular evidence of diatom effects in the copepod Calanus helgolandicus (original) (raw)
Related papers
Marine Drugs, 2020
Diatoms are the dominant component of the marine phytoplankton. Several diatoms produce secondary metabolites, namely oxylipins, with teratogenic effects on their main predators, crustacean copepods. Our study reports the de novo assembled transcriptome of the calanoid copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Differential expression analysis was also performed between copepod females exposed to the diatom and the control flagellate Prorocentrum minimum, which does not produce oxylipins. Our results showed that transcripts involved in carbohydrate, amino acid, folate and methionine metabolism, embryogenesis, and response to stimulus were differentially expressed in the two conditions. Expression of 27 selected genes belonging to these functional categories was also analyzed by RT-qPCR in C. helgolandicus females exposed to a mixed solution of the oxylipins heptadienal and octadienal at the concentration of 10 µM, 15 µM, and 20 µM. The results confirmed differential expression analysis, with up-regulation of genes involved in stress response and down-regulation of genes associated with folate and methionine metabolism, embryogenesis, and signaling. Overall, we offer new insights on the mechanism of action of oxylipins on maternally-induced embryo abnormality. Our results may also help identify biomarker genes associated with diatom-related reproductive failure in the natural copepod population at sea.
Diatoms are eukaryotic unicellular plants that constitute one of the major components of marine phytoplankton, comprising up to 40% of annual productivity at sea and representing 25% of global carbon-fixation. Diatoms have traditionally been considered a preferential food for zooplankton grazers such as copepods, but, in the last two decades, this beneficial role has been challenged after the discovery that many species of diatoms produce toxic metabolites, collectively termed oxylipins, that induce reproductive failure in zooplankton grazers. Diatoms are the dominant natural diet of Calanus sinicus, a cold-temperate calanoid copepod that supports secondary production of important fisheries in the shelf ecosystems of the Northwest Pacific Ocean, Yellow Sea, Sea of Japan and South China Sea. In this study, the effect of the oxylipin-producing diatom Skeletonema marinoi on C. sinicus has been evaluated by analyzing expression level changes of genes involved in defense and detoxification systems. Results show that C. sinicus is more resistant to a diet of this diatom species in terms of gene expression patterns, compared to the congeneric species Calanus helgolandicus which is an important constituent of the temperate waters of the Atlantic Ocean and northern Mediterranean Sea. These findings contribute to the better understanding of genetic and/or phenotypic flexibility of copepod species and their capabilities to cope with stress by identifying molecular markers (such as stress and detoxification genes) as biosensors for environmental perturbations (e.g. toxins and contaminants) affecting marine copepods.
Molecular evidence of the toxic effects of diatom diets on gene expression patterns in copepods
2011
Background: Diatoms are dominant photosynthetic organisms in the world's oceans and are considered essential in the transfer of energy through marine food chains. However, these unicellular plants at times produce secondary metabolites such as polyunsaturated aldehydes and other products deriving from the oxidation of fatty acids that are collectively termed oxylipins. These cytotoxic compounds are responsible for growth inhibition and teratogenic activity, potentially sabotaging future generations of grazers by inducing poor recruitment in marine organisms such as crustacean copepods.
PLoS ONE
Diatoms are key phytoplankton organisms and one of the main primary producers in aquatic ecosystems. However, many diatom species produce a series of secondary metabolites, collectively termed oxylipins, that disrupt development in the offspring of grazers, such as copepods, that feed on these unicellular algae. We hypothesized that different populations of copepods may deal differently with the same oxylipin-producing diatom diet. Here we provide comparative studies of expression level analyses of selected genes of interest for three Calanus helgolandicus populations (North Sea, Atlantic Ocean and Mediterranean Sea) exposed to the same strain of the oxylipin-producing diatom Skeletonema marinoi using as control algae the flagellate Rhodomonas baltica. Expression levels of detoxification enzymes and stress proteins (e.g. glutathione S-transferase, glutathione synthase, superoxide dismutase, catalase, aldehyde dehydrogenases and heat shock proteins) and proteins involved in apoptosis regulation and cell cycle progression were analyzed in copepods after both 24 and 48 hours of feeding on the diatom or on a control diet. Strong differences occurred among copepod populations, with the Mediterranean population of C. helgolandicus being more susceptible to the toxic diet compared to the others. This study opens new perspectives for understanding copepod population-specific responses to diatom toxins and may help in underpinning the cellular mechanisms underlying copepod toxicity during diatom blooms.
Copepod Population-Specific Response to a Toxic Diatom Diet
PLoS ONE, 2012
Diatoms are key phytoplankton organisms and one of the main primary producers in aquatic ecosystems. However, many diatom species produce a series of secondary metabolites, collectively termed oxylipins, that disrupt development in the offspring of grazers, such as copepods, that feed on these unicellular algae. We hypothesized that different populations of copepods may deal differently with the same oxylipin-producing diatom diet. Here we provide comparative studies of expression level analyses of selected genes of interest for three Calanus helgolandicus populations (North Sea, Atlantic Ocean and Mediterranean Sea) exposed to the same strain of the oxylipin-producing diatom Skeletonema marinoi using as control algae the flagellate Rhodomonas baltica. Expression levels of detoxification enzymes and stress proteins (e.g. glutathione S-transferase, glutathione synthase, superoxide dismutase, catalase, aldehyde dehydrogenases and heat shock proteins) and proteins involved in apoptosis regulation and cell cycle progression were analyzed in copepods after both 24 and 48 hours of feeding on the diatom or on a control diet. Strong differences occurred among copepod populations, with the Mediterranean population of C. helgolandicus being more susceptible to the toxic diet compared to the others. This study opens new perspectives for understanding copepod population-specific responses to diatom toxins and may help in underpinning the cellular mechanisms underlying copepod toxicity during diatom blooms.
Differential gene expression in diapausing and active Calanus finmarchicus (Copepoda
Marine Ecology-progress Series, 2008
To survive long periods of low food availability, some calanoid copepods have a life history that includes a diapause phase during which copepodids delay development to adulthood, migrate to depth, reduce metabolism, and utilize stored lipids for nourishment. While seasonal patterns in diapause have been described, the environmental and physiological regulation of diapause has not been elucidated. We collected Calanus finmarchicus C5 copepodids from surface (0 to 39 m) and deep (157 to 201 m) waters in the Gulf of Maine, and both morphological and biochemical measurements indicated that these copepodids were from active and diapausing populations, respectively. Two complementary molecular techniques were used to compare gene expression in these 2 groups: (1) suppressive subtractive hybridization (SSH) was used to identify genes that may be differentially expressed, and (2) quantitative real-time RT-PCR was used to characterize patterns of gene expression in individual copepodids. Three genes associated with lipid synthesis, transport and storage (ELOV, FABP, RDH) were upregulated (more highly expressed) in active copepods, particularly those with small oil sacs. Expression of ferritin was greater in diapausing copepods with large oil sacs, consistent with a role of ferritin in chelating metals to protect cells from oxidative stress and/or delay development. Ecdysteroid receptor (EcR) expression was greater in diapausing copepods, highlighting the need for further investigation into endocrine regulation of copepod development. This study represents the first molecular characterization of gene expression associated with calanoid copepod diapause and provides a foundation for future investigations of the underlying mechanisms that regulate diapause.
PLoS ONE, 2014
Assessing the impact of global warming on the food web of the North Atlantic will require difficult-to-obtain physiological data on a key copepod crustacean, Calanus finmarchicus. The de novo transcriptome presented here represents a new resource for acquiring such data. It was produced from multiplexed gene libraries using RNA collected from six developmental stages: embryo, early nauplius (NI-II), late nauplius (NV-VI), early copepodite (CI-II), late copepodite (CV) and adult (CVI) female. Over 400,000,000 paired-end reads (100 base-pairs long) were sequenced on an Illumina instrument, and assembled into 206,041 contigs using Trinity software. Coverage was estimated to be at least 65%. A reference transcriptome comprising 96,090 unique components (''comps'') was annotated using Blast2GO. 40% of the comps had significant blast hits. 11% of the comps were successfully annotated with gene ontology (GO) terms. Expression of many comps was found to be near zero in one or more developmental stages suggesting that 35 to 48% of the transcriptome is ''silent'' at any given life stage. Transcripts involved in lipid biosynthesis pathways, critical for the C. finmarchicus life cycle, were identified and their expression pattern during development was examined. Relative expression of three transcripts suggests wax ester biosynthesis in late copepodites, but triacylglyceride biosynthesis in adult females. Two of these transcripts may be involved in the preparatory phase of diapause. A key environmental challenge for C. finmarchicus is the seasonal exposure to the dinoflagellate Alexandrium fundyense with high concentrations of saxitoxins, neurotoxins that block voltage-gated sodium channels. Multiple contigs encoding putative voltage-gated sodium channels were identified. They appeared to be the result of both alternate splicing and gene duplication. This is the first report of multiple Na V 1 genes in a protostome. These data provide new insights into the transcriptome and physiology of this environmentally important zooplankter.
The ISME journal, 2018
Diatoms and copepods are main actors in marine food webs. The prey-predator interactions between them affect bloom dynamics, shape marine ecosystems and impact the energy transfer to higher trophic levels. Recently it has been demonstrated that the presence of grazers may affect the diatom prey beyond the direct effect of grazing. Here, we investigated the response of the chain-forming centric diatom Skeletonema marinoi to grazer cues, including changes in morphology, gene expression and metabolic profile. S. marinoi cells were incubated with Calanus finmarchicus or with Centropages typicus and in both cases responded by reducing the chain length, whereas changes in gene expression indicated an activation of stress response, changes in the lipid and nitrogen metabolism, in cell cycle regulation and in frustule formation. Transcripts linked to G protein-coupled receptors and to nitric oxide synthesis were differentially expressed suggesting involvement of these signalling transductio...