Attenuate Inflammation in Obliterative Airway Disease in (original) (raw)
Related papers
Stem Cells International, 2014
Obliterative bronchiolitis (OB) remains the most significant cause of death in long-term survival of lung transplantation. Using an established murine heterotopic tracheal allograft model, the effects of different routes of administration of bone marrow-derived multipotent stromal cells (MSCs) on the development of OB were evaluated. Tracheas from BALB/c mice were implanted into the subcutaneous tissue of major histocompatibility complex-(MHC-) disparate C57BL/6 mice. At the time of transplant, bone marrow-derived MSCs were administered either systemically or locally or via a combination of the two routes. The allografts were explanted at various time points after transplantation and were evaluated for epithelial integrity, inflammatory cell infiltration, fibrosis, and luminal obliteration. We found that the most effective route of bone marrow-derived MSC administration is the combination of systemic and local delivery. Treatment of recipient mice with MSCs suppressed neutrophil, macrophage, and T-cell infiltration and reduced fibrosis. These beneficial effects were observed despite lack of significant MSC epithelial engraftment or new epithelial cell generation. Our study suggests that optimal combination of systemic and local delivery of MSCs may ameliorate the development of obliterative airway disease through modulation of immune response.
Transplantation, 2015
Background. Bronchiolitis obliterans syndrome is caused by a fibroproliferative process in lung allografts resulting in irreversible damage. In this study, we induced obliterative bronchiolitis and studied the contribution of regulatory Tcells to its development in immune-deficient mice receiving heterotopic porcine bronchus transplants, and major histocompatibility complex-mismatched porcine peripheral blood mononuclear cell. Furthermore, we aimed to corroborate our findings in a humanized mouse model. Methods. Heterotopic bronchus transplantation was performed in 33 NOD.rag − / − γc −/− mice, using miniature pigs as tissue donors. The recipient mice then either received saline (negative control), unsorted MHC-mismatched PBMC (positive control), PBMC enriched with CD4 + CD25 high cells or PBMC depleted of CD4 + CD25 high cells for reconstitution. The results were validated in 28 NOD.rag − / − γc −/− mice undergoing heterotopic human bronchus transplantation and reconstitution with allogeneic human PBMC. Results. Histological lesions similar to those typical for obliterative bronchiolitis developed in vivo after reconstitution with allogeneic PBMC and were more severe in animals engrafted with PBMC depleted of CD4 + CD25 high cells. In contrast, the group reconstituted with PBMC enriched with CD4 + CD25 high cells showed well-preserved histology. The results of the humanized model confirmed those obtained in the porcinized model. Conclusions. In conclusion, both porcinized and humanized mouse models of heterotopic subcutaneous bronchus transplantation imitate the in vivo development of bronchiolitis obliterans syndrome-like lesions and reveal its sensitivity to T-cell regulation.
Iranian journal of allergy, asthma, and immunology, 2017
Bone marrow-derived mesenchymal stem cells (BMSCs) can ameliorate a variety of lung diseases such as asthma, lung fibrosis, and acute lung injury by its anti-inflammatory and immunmodulatory effects. In this study, we developed a mouse model of bronchiolitis obliterans (BO) and evaluated the effects of the intraperitoneal administration of BMSCs on lung histopathology and cytokine levels. 25 BALB/c mice were divided into four groups; control group (Group I), BO developed and 1x106 BMSCs-injected group (Group II), non-BO, 1x106 BMSCs-injected group (Group III), and BO developed and saline-injected group (Group IV). Histological and immunohistochemical findings of the lung tissue and the migration of BMSCs to the lung were evaluated using light and confocal microscopy techniques. Confocal microscopy evaluations showed that there was no noteworthy amount of BMSCs in the lung tissue of group III while significant amount of BMSCs was detected in group II. Wall thicknesses of terminal bro...
MSC from fetal and adult lungs possess lung-specific properties compared to bone marrow-derived MSC
Scientific Reports, 2016
Mesenchymal stromal cells (MSC) are multipotent cells with regenerative and immune-modulatory properties. Therefore, MSC have been proposed as a potential cell-therapy for bronchiolitis obliterans syndrome (BOS). On the other hand, there are publications demonstrating that MSC might be involved in the development of BOS. Despite limited knowledge regarding the functional role of tissue-resident lung-MSC, several clinical trials have been performed using MSC, particularly bone marrow (BM)derived MSC, for various lung diseases. We aimed to compare lung-MSC with the well-characterized BM-MSC. Furthermore, MSC isolated from lung-transplanted patients with BOS were compared to patients without BOS. Our study show that lung-MSCs are smaller, possess a higher colony-forming capacity and have a different cytokine profile compared to BM-MSC. Utilizing gene expression profiling, 89 genes including lung-specific FOXF1 and HOXB5 were found to be significantly different between BM-MSC and lung-MSC. No significant differences in cytokine secretion or gene expression were found between MSC isolated from BOS patients compared recipients without BOS. These data demonstrate that lung-resident MSC possess lung-specific properties. Furthermore, these results show that MSC isolated from lung-transplanted patients with BOS do not have an altered phenotype compared to MSC isolated from good outcome recipients. Mesenchymal stromal cells (MSC) have potent immune-regulatory and regenerative functions and they are therefore promising candidates for cell therapy approaches to treat a variety of different diseases including severe diseases of the lung, such as idiopathic pulmonary fibrosis (IPF) 1 , chronic obstructive pulmonary disease (COPD) 2 and acute respiratory distress syndrome (ARDS) 3. The only curative treatment of severe lung diseases like IPF and COPD at present is lung-transplantation. However, chronic rejection, which is manifested as bronchiolitis obliterans syndrome (BOS)/obliterative bronchiolitis, is a severe complication affecting the survival after a lung-transplantation. The hallmark of this complication is the fibrotic obliteration of the peripheral airways 4 , which is a fibro-proliferative disease for which inflammation has been shown to be an important driving factor. It has therefore been suggested that MSC might be a treatment option. Although MSC have been used in clinical trials for the treatment of severe lung diseases, not much is known about the primary resident lung-MSC. Open questions are for example if the lung-MSC are altered in diseases such as BOS and how lung-resident MSC differ from the bone marrow (BM)-derived MSC, the predominant MSC source in clinical trials? Therefore, the current study aimed to investigate the tissue specificity of MSC isolated from lung tissues (fetal and adult) and to compare them to the extensively studied BM-derived MSC. Furthermore, we aimed to investigate whether MSC isolated from lung-transplanted patients with BOS were different from MSC isolated from good outcome recipients. Our results demonstrate that although lung-derived
The mononuclear phagocyte system contributes to fibrosis in post-transplant obliterans bronchiolitis
2020
Bronchiolitis obliterans syndrome (BOS) is a fibrotic disease that is heavily responsible for the high mortality rates after lung transplantation. Myofibroblasts are primary effectors of this fibrotic process, but their origin is still debated. The purpose of this work was to identify the precursors of mesenchymal cells responsible for post-transplant airway fibro-obliteration. Lineage-tracing tools were used to track or deplete potential sources of myofibroblasts in the heterotopic tracheal transplantation model. Allografts were analysed by histology, confocal microscopy, flow cytometry or single-cell transcriptomic analysis. BOS explants were evaluated by histology and confocal microscopy. Myofibroblasts in the allografts were recipient-derived. When recipient mice were treated with tacrolimus, we observed rare epithelial-to-mesenchymal transition phenomena and an overall increase in donor-derived myofibroblasts (p=0.0467), but the proportion of these cells remained low (7%). Haem...
Thorax, 2009
Background: It is understood that chronic allograft failure occurs as a result of alloimmune and nonalloimmune injury. Dendritic cells (DC) are thought to be crucial in regulating (allo)immune airway damage and interactions with epithelial cells are likely. Studies in human lung transplantation are limited, however, and the available literature on DC is inconsistent. This study focused on the ex vivo influence of primary bronchial epithelial cells derived from lung allografts on DC differentiation. Methods: Epithelial cell conditioned media (ECCM) were added to monocytes differentiating into DC under the influence of interleukin-4 and granulocyte macrophagecolony stimulating factor. The resultant cells were compared with DC cultured without ECCM and with monocyte-derived macrophages. Expression of typical DC (eg, CD1a) and macrophage (eg, CD14) markers was assessed by flow cytometry. Phenotypical assessments were complemented by functional studies of mannose receptor-mediated phagocytosis (FITC-dextran uptake) and antigen-presenting capability (mixed lymphocyte reactions). Results: Cells exposed to ECCM expressed significantly lower levels of CD1a than unexposed DC. CD14 expression and phagocytic function were increased. ECCM cultured cells also expressed lower levels of T cell co-stimulatory molecules, secreted an anti-inflammatory cytokine profile and had significantly reduced antigenpresenting capability. Conclusion: Using phenotypic and functional approaches, this study has shown that ECCM from lung allografts drives the production of macrophage-like cells from monocytes rather than DC. The data suggest that epithelial cells may restrain airway DC and potential alloimmunity. It is unclear whether the observed effect is specifically seen in lung transplant recipients or is a general property of bronchial epithelial cells. This may reflect a homeostatic interrelationship between airway epithelial and DC populations relevant both to lung allografts and the lung more generally.
Respiratory Physiology & Neurobiology, 2011
We hypothesized that bone marrow-derived mononuclear cells (BMDMC) would attenuate the remodeling process in a chronic allergic inflammation model. C57BL/6 mice were assigned to two groups. In OVA, mice were sensitized and repeatedly challenged with ovalbumin. Control mice (C) received saline under the same protocol. C and OVA were further randomized to receive BMDMC (2 × 106) or saline intravenously 24 h before the first challenge. BMDMC therapy reduced eosinophil infiltration, smooth muscle-specific actin expression, subepithelial fibrosis, and myocyte hypertrophy and hyperplasia, thus causing a decrease in airway hyperresponsiveness and lung mechanical parameters. BMDMC from green fluorescent protein (GFP)-transgenic mice transplanted into GFP-negative mice yielded lower engraftment in OVA. BMDMC increased insulin-like growth factor expression, but reduced interleukin-5, transforming growth factor-β, platelet-derived growth factor, and vascular endothelial growth factor mRNA expression. In conclusion, in the present chronic allergic inflammation model, BMDMC therapy was an effective pre-treatment protocol that potentiated airway epithelial cell repair and prevented inflammatory and remodeling processes.
Primary airway epithelial cell culture from lung transplant recipients
European Respiratory Journal, 2005
Long-term survival in lung transplantation is limited by the development of obliterative bronchiolitis, a condition characterised by inflammation, epithelial injury, fibroproliferation and obliteration of bronchioles leading to airflow obstruction. To investigate the role of the bronchial epithelium in the pathogenesis of obliterative bronchiolitis the current study aimed to establish primary bronchial epithelial cell cultures (PBEC) from lung allografts. Four to six bronchial brushings were obtained from sub-segmental bronchi of lung allografts. Cells were seeded onto collagen-coated plates and grown to confluence in bronchial epithelial growth medium. Bronchial brushings (n533) were obtained from 27 patients. PBECs were grown to confluence from 12 out of 33 (39%) brushings. Failure to reach confluence was due to early innate infection. Bacteria were usually isolated from both bronchoalveolar lavage and culture media, but a separate population was identified in culture media only. Primary culture of bronchial epithelial cells from lung transplant recipients is feasible, despite a high rate of early, patient-derived infection. Latent infection of the allograft, identified only by bronchial brushings, may itself be a persistent stimulus for epithelial injury. This technique facilitates future mechanistic studies of airway epithelial responses in the pathogenesis of obliterative bronchiolitis.