Skill Assessment of North American Multi-Models Ensemble (NMME) for June-September (JJAS) Seasonal Rainfall over Ethiopia (original) (raw)
Atmospheric and Climate Sciences
In recent years, there has been increasing demand for high-resolution seasonal climate forecasts at sufficient lead times to allow response planning from users in agriculture, hydrology, disaster risk management, and health, among others. This paper examines the forecasting skill of the North American Multi-model Ensemble (NMME) over Ethiopia during the June to September (JJAS) season. The NMME, one of the multi-model seasonal forecasting systems, regularly generates monthly seasonal rainfall forecasts over the globe with 0.5-11.5 months lead time. The skill and predictability of seasonal rainfall are assessed using 28 years of hindcast data from the NMME models. The forecast skill is quantified using canonical correlation analysis (CCA) and root mean square error. The results show that the NMME models capture the JJAS seasonal rainfall over central, northern, and northeastern parts of Ethiopia while exhibiting weak or limited skill across western and southwestern How to cite this paper: Teshome, A.,