Shallow factors controlling the explosivity of basaltic magmas: The 17–25 May 2016 eruption of Etna Volcano (Italy) (original) (raw)

Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy)

2006

, raising the possibility of changing magmatic conditions. Here we decipher the origin and mechanisms of the second eruption from the composition and volatile (H 2 O, CO 2 , S, Cl) content of olivine-hosted melt inclusions in explosive products from its south flank vents. Our results demonstrate that powerful lava fountains and ash columns at the eruption onset were sustained by closed system ascent of a batch of primitive, volatile-rich (!4 wt %) basaltic magma that rose from !10 km depth below sea level (bsl) and suddenly extruded through 2001 fractures maintained opened by eastward flank spreading. This magma, the most primitive for 240 years, probably represents the alkali-rich parental end-member responsible for Etna lavas' evolution since the early 1970s. Few of it was directly extruded at the eruption onset, but its input likely pressurized the shallow plumbing system several weeks before the eruption. This latter was subsequently fed by the extrusion and degassing of larger amounts of the same, but slightly more evolved, magma that were ponding at 6-4 km bsl, in agreement with seismic data and with the lack of preeruptive SO 2 accumulation above the initial depth of sulphur exsolution ($3 km bsl). We find that while ponding, this magma was flushed and dehydrated by a CO 2-rich gas phase of deeper derivation, a process that may commonly affect the plumbing system of Etna and other alkali basaltic volcanoes.

Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): Mineralogical, geochemical and isotopic data

Journal of Volcanology and Geothermal Research, 2009

After the 6 month-long effusive event of 2002-2003, a new lava effusion occurred at Stromboli between 27 February and 2 April 2007. Despite the different durations, approximately the same volume of magma was emitted in both eruptions, in the order of 10 7 m 3 . A paroxysmal eruption occurred at the summit craters in both the 2002-2003 and 2007 episodes, during which a significant amount of low porphyritic (LP), volatile-rich magma was erupted. In both cases, the paroxysms did not interrupt the lava emission. Here, we present compositional data, including texture, mineralogy, chemistry and Sr and Nd isotope ratios of bulk-rock, groundmass and separated minerals of lavas erupted in 2007, together with chemistry and Sr and Nd isotope composition of the pumices emitted during the 15 March paroxysm. As a whole, the lavas have the same texture and chemistry that characterize the highly porphyritic (HP) products usually erupted at Stromboli during normal Strombolian activity and effusive events. Compared to the previous HP products, the 2007 lavas show minor but systematic mineralogical and isotopic variations which are consistent with a modest increase of the magma supply rate of the volcano. Compositional A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 2 variations during the entire duration of the event are very modest. Glass chemistry changes in lavas erupted in the second half of March can be explained by the minor mixing between the volatilerich LP magma rising through the shallow magmatic system during the 15 March paroxysm and the degassed residing HP magma. A first conclusion of this study is that there is no compositional evidence supporting major changes in the magma dynamics of the volcano accompanying the effusive activity, as also suggested for the 2002-2003 event.

Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts

Lithos, 2010

A systematic study of textural and compositional zoning (An% and FeO variation) in plagioclase phenocrysts of historic (pre-1971) and recent (post-1971) lavas at Mount Etna was made through back-scattered electron (BSE) images and electron microprobe analyses (EMP). The textures considered include oscillatory zoning and several types of dissolution, resorption and growth textures at the phenocryst cores and/or rims. Two patterns of oscillation were recognized from the combined An–FeO variation: 1) Low Amplitude–High Frequency (LAHF) and 2) High Amplitude–Low Frequency (HALF). The first pattern is interpreted here as due to kinetic effects at the plagioclase/melt interface which developed during crystallization in closed reservoirs. The second, which sometimes involves thin dissolution surfaces marked by irregular edges, angular unconformities and complex dissolution–regrowth patterns, might imply crystallization in a more dynamic regime, probably driven by chemical and physical gradients of the system (e.g., convection in a steadily degassing open-conduit). Dissolution and resorption textures at the core vary from patchy (exclusive to plagioclases within pre-1971 lavas) to strongly sieved, and can be related to increasing rates of decompression under H2O-undersaturated conditions. Thick sieve-textured envelopes at the phenocryst rims, generally coupled with marked An–FeO increase, result from mixing with more primitive and volatile-rich magmas. In the same crystals from recent activity, An and, to a lesser extent, FeO increase, consistent with the mixing of H2O-rich magmas similar in their mafic character to the resident magma (cryptic mixing). Two types of growth textures were also recognized at the crystal rims: 1) stripes of regularly-shaped melt inclusions and 2) swallow-tailed, skeletal crystals. In the first instance, the concordant An–FeO decrease suggests crystallization caused by fast ascent-related decompression accompanied by volatile loss. In the second, An decrease at effectively constant FeO contents may indicate crystallization at a high level of undercooling from already degassed magma, followed by rapid quenching; such a feature might be acquired during syn- or post-eruptive conditions.Although textures found in historic lavas are rather similar to those in the recent ones, some differences occur, such as lack of crystals with patchy cores in recent products and lower An contents in crystals of historic ones. The available data allowed us to obtain information on the dynamics of the feeding system, highlighting their possible modifications over time. In particular, historically erupted magmas, generally acknowledged to be volatile-poor, may have ascended through the deep portions of the plumbing system under H2O-undersaturated conditions at lower rates than the recent ones, recognized as more volatile-rich. Eruption triggering mechanisms from closed reservoirs in the shallow portions of the feeding system are similar for both historic and recent events, and may be generally favoured by a recharging phase of more primitive, undegassed magma or by a few episodes of important fracture opening (e.g., in response to an earthquake swarm).

Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption

Bulletin of Volcanology, 2008

Mount Etna volcano was shaken during the summer 2001 by one of the most singular eruptive episodes of the last centuries. For about 3 weeks, several eruptive fractures developed, emitting lava flows and tephra that significantly modified the landscape of the southern flank of the volcano. This event stimulated the attention of the scientific community especially for the simultaneous emission of petrologically distinct magmas, recognized as coming from different segments of the plumbing system. A stratigraphically controlled sampling of tephra layers was performed at the most active vents of the eruption, in particular at the 2,100 m (CAL) and at the 2,550 m (LAG) scoria cones. Detailed scanning electron microscope and energy dispersive x-ray spectrometer (SEM-EDS) analyses performed on glasses found in tephra and comparison with lava whole rock compositions indicate an anomalous increase in Ti, Fe, P, and particularly of K and Cl in the upper layers of the LAG sequence. Mass balance and thermodynamic calculations have shown that this enrichment cannot be accounted for by “classical” differentiation processes, such as crystal fractionation and magma mixing. The analysis of petrological features of the magmas involved in the event, integrated with the volcanological evolution, has evidenced the role played by volatiles in controlling the magmatic evolution within the crustal portion of the plumbing system. Volatiles, constituted of H2O, CO2, and Cl-complexes, originated from a deeply seated magma body (DBM). Their upward migration occurred through a fracture network possibly developed by the seismic swarms during the period preceding the event. In the upper portion of the plumbing system, a shallower residing magma body (ABT) had chemical and physical conditions to receive migrating volatiles, which hence dissolved the mobilized elements producing the observed selective enrichment. This volatile-induced differentiation involved exclusively the lowest erupted portion of the ABT magma due to the low velocity of volatiles diffusion within a crystallizing magma body and/or to the short time between volatiles migration and the onset of the eruption. Furthermore, the increased amount of volatiles in this level of the chamber strongly affected the eruptive behavior. In fact, the emission of these products at the LAG vent, towards the end of the eruption, modified the eruptive style from classical strombolian to strongly explosive.

Mechanisms of Ash Generation at Basaltic Volcanoes: The Case of Mount Etna, Italy

Frontiers in Earth Science

Basaltic volcanism is the most widespread volcanic activity on Earth and planetary bodies. On Earth, eruptions can impact global and regional climate, and threaten populations living in their shadow, through a combination of ash, gas and lava. Ash emissions are a very typical manifestation of basaltic activity; however, despite their frequency of occurrence, a systematic investigation of basaltic ash sources is currently incomplete. Here, we revise four cases of ash emissions at Mount Etna linked with the most common style of eruptive activity at this volcano: lava fountains (4-5 September 2007), continuous Strombolian activity transitioning to pulsing lava fountaining (24 November 2006), isolated Strombolian explosions (8 April 2010), and continuous to pulsing ash explosions (last phase of 2001 eruption). By combining observations on the eruptive style, deposit features and ash characteristics, we propose three mechanisms of ash generation based on variations in the magma mass flow rate. We then present an analysis of magma residence time within the conduit for both cylindrical and dike geometry, and find that the proportion of tachylite magma residing in the conduit is very small compared to sideromelane, in agreement with observations of ash componentry for lava fountain episodes at Mount Etna. The results of this study are relevant to classify ash emission sources and improve hazard mitigation strategies at basaltic volcanoes where the explosive activity is similar to Mount Etna.

Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: Volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions

Chemical Geology, 2017

Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna, in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lavafountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO 2 gas fluxing can explain the evolution of H 2 O, CO 2 , S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO 2rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas

Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: The 2001–2006 eruptive period at Mt. Etna

Earth-Science Reviews, 2014

Plagioclase is the most common phenocryst in all Etnean magmatic suites (~50% in volume), as well as in most lavas erupted worldwide. Its stability field is strongly dependent on the physico-chemical conditions of the melt and, consequently, it can be used as a tool to record the processes occurring within the feeding system. With this aim, a detailed textural and compositional study of plagioclase was performed on the products emitted during the eruptions. Four distinct textures were recognized at the crystal cores: (1) clear and rounded (An 73-85 ), (2) dusty and rounded (An 73-85 ), (3) sieved (An 82-88 ) and (4) patchy (An 60-81 ), while two distinct textures are commonly observed at the crystal rim: (1) dusty (An 73-90 ) and (2) with melt inclusion alignments (An 70-76 ). Moreover all plagioclases present a thin (10-20 μm) outermost less calcic (An 53-76 ) rim. For each crystal a complex evolutionary path was reconstructed, and several growth and resorption episodes were identified. The fO 2 was estimated using Plag-Cpx/liquid equilibrium in order to calculate the Fe +3 /Fe 2+ ratio in the melt and, in turn, to reconstruct the primitive magma composition by adding a wehrlitic assemblage to the least evolved lava of the four eruptive episodes. MELTS modeling was then developed using this primary magma composition, as well as a trachybasaltic lava. Calculations were performed at variable pressures (400-50 MPa, step of 0.50 MPa) and H 2 O contents (3.5-0 wt.%, step 0.5 wt.%) in order to estimate the crystallization temperature of olivine, clinopyroxene, plagioclase and spinel, decreasing T from the liquidus down to 1000°C at steps of 20°C. P-T and water contents were also determined using geothermobarometers and plagioclase-melt hygrometers respectively, aiming at verifying the parameters used in the MELTS modeling. At this point plagioclase textural features and compositions were related to specific P-T-fO 2 -H 2 O conditions. Plagioclase stability models indicate that: (1) H 2 O strongly influences the plagioclase-melt equilibrium allowing the crystallizations of more calcic compositions only at shallow levels; (2) patchy cores form at high pressure (up to 350 MPa) and low water content (b 1.7 wt.%); (3) clear dissolved cores form at lower pressure (150 MPa) and higher water content (1.5-2.8 wt.%); (4) dusty rims form at even lower pressure straddling the H 2 O-saturation curve and, (5) melt alignments form during degassing. According to experimental works each of these textures can be related to a different process within the feeding system, such as multiple magma inputs (patchy core), volatile addition or increase in T (clear core), mixing (dusty rims) and rapid decompression and degassing (melt inclusion alignment at rims). These inferences were successfully compared with the eruptive evolution of each event as deduced from direct observations, and geophysical and petrological data. The overall picture shows that plagioclase crystallizes under polybaric conditions in a vertically extended and continuous feeding system in which at least two magma crystallization levels were identified. Plagioclase stability also indicates that a large variability in water content characterizes the magma within the feeding system.

Inferences on the magmatic plumbing system at Stromboli volcano (Italy) from trace element geochemistry of matrix glasses and minerals in different types of explosive eruptions

Contributions to Mineralogy and Petrology

Stromboli (Italy) is a basaltic volcano characterized by persistent, mild strombolian activity, occasionally interrupted by lava effusion and more violent explosive events, named major explosions and paroxysms depending on their intensity and magnitude. The normal activity is fed by a shallow and degassed highly porphyritic (HP) shoshonitic basalt carrying about 50 vol.% crystals settled in a shoshonitic glassy matrix (K2O > 3.8 wt.%). The more energetic explosions erupt a deep, volatile-rich, low-porphyritic (LP) magma with < 10 vol.% crystals in a shoshonitic basaltic glassy matrix (K2O < 2.4 wt.%). Products with intermediate glass composition are also found in the more violent explosive events. In this study, we present a new data set of major and trace element contents in matrix glasses and minerals performed in products from different types of explosive activity that occurred at Stromboli between 1998 and 2020. This large data set is used to put constraints on the evol...