Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates (original) (raw)
Related papers
Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts
Stem Cell Reviews and Reports, 2011
The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are
Cell transplantation, 2016
Horse health has become a major concern with the expansion of horse-related industries and sports; the importance of healthy muscles for horse performance and daily activities is undisputed. Here, we generated equine induced pluripotent stem cells (E-iPSCs) by reprogramming equine adipose-derived stem cells into iPSCs using a polycistronic lentiviral vector encoding four transcription factors (i.e., Oct4, Sox2, Klf4, and c-Myc) and then examined their pluripotent characteristics. Subsequently, established E-iPSCs were transplanted into muscle-injured Rag/mdx mice. The histopathology results showed that E-iPSC-transplanted mice exhibited enhanced muscle regeneration compared to controls. In addition, E-iPSC-derived myofibers were observed in the injured muscles. In conclusion, we show that E-iPSCs could be successfully generated from equine ASCs and transplanted into injured muscles and that E-iPSCs have the capacity to induce regeneration of injured muscles.
Frontiers in veterinary science, 2015
Tendon injuries occur commonly in horses and their repair through scar tissue formation predisposes horses to a high rate of re-injury. Pluripotent stem cells may provide a cell replacement therapy to improve tendon tissue regeneration and lower the frequency of re-injury. We have previously demonstrated that equine embryonic stem cells (ESCs) differentiate into the tendon cell lineage upon injection into the damaged horse tendon and can differentiate into functional tendon cells in vitro to generate artificial tendons. Induced pluripotent stem cells (iPSCs) have now been derived from horses but, to date, there are no reports on their ability to differentiate into tendon cells. As iPSCs can be produced from adult cell types, they provide a more accessible source of cells than ESCs, which require the use of horse embryos. The aim of this study was to compare tendon differentiation by ESCs and iPSCs produced through two independent methods. In two-dimensional differentiation assays, t...
Stemness Signature of Equine Marrow-derived Mesenchymal Stem Cells
International Journal of Stem Cells, 2017
Background: Application of competent cells such as mesenchymal stem cells (MSCs) for treatment of musculoskeletal disorders in equine athletes is increasingly needed. Moreover, similarities of horse and human in size, load and types of joint injuries, make horse as a good model for MSCs therapy studies. This study was designed to isolate and characterize stemness signature of equine bone marrow-derived mesenchymal stem cells (BM-MSCs). Methods: BM of three mares was aspirated and the mononuclear cells (MNCs) were isolated using density gradient. The primary MNCs were cultured and analyzed after tree passages (P3) for growth characteristics, differentiation potentials, and the expression of genes including CD29, CD34, CD44, CD90, CD105, MHC-I, MHC-II and pluripotency related genes (Nanog, Oct-4, Sox-2, SSEA-1,-3,-4) using RT-PCR or immunocytochemistry techniques. Results: The isolated cells in P3 were adherent and fibroblast-like in shape with doubling times of 78.15 h. Their clonogenic capacity was 8.67±4% and they were able to differentiate to osteogenic, adipogenic and chondrogenic lineages. Cells showed expression of CD29, CD44, CD90, MHC-I and Sox-2 while no expression for CD34, MHC-II, CD105, and pluripotency stemness markers was detected. Conclusions: In conclusion, data showed that isolated cells have the basic and minimal criteria for MSCs, however, expressing only one pluripotency gene (sox-2).
Stem Cells, 2006
Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.
Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts
Stem Cells and Development, 2013
Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine.
Stem Cells and Development, 2019
Degenerative joint disease is one of the main causes of equine early retirement from pleasure riding or a performance career. The disease is initially triggered by an abnormal loading of normal cartilage or a normal loading of abnormal cartilage. This primary insult is accompanied with joint inflammation, which leads to further progressive degeneration of the articular cartilage and changes in the surrounding tissues. Therefore, in search for an effective treatment, 75 adult horses with early signs of degenerative fetlock joint disease were enrolled in a randomized, multicenter, double-blinded, and placebo-controlled study. Fifty animals were injected intra-articularly with the investigational veterinary product (IVP) consisting of allogeneic chondrogenic induced mesenchymal stem cells (ciMSCs) with equine allogeneic plasma, and 25 horses were injected with 0.9% NaCl (saline) control product. From week 3 to 18 after treatment, lameness scores (P < 0.001), flexion test responses (P < 0.034), and joint effusion scores (P < 0.001) were remarkably superior in IVP-treated horses. Besides nasal discharge in both treatment groups, no adverse events were observed during the entire study period. On long-term follow-up (1 year), significantly more investigational product-treated horses were working at training level or were returned to their previous level of work (P < 0.001).
Multipotency of equine mesenchymal stem cells derived from synovial fluid
Veterinary journal (London, England : 1997), 2014
Cartilage regeneration with cell therapy following arthroscopic surgery could be used in racehorses with intra-articular fractures (IAF) and osteochondritis dissecans (OCD). The aims of this study were to investigate the origin and multipotency of stromal cells in the synovial fluid (SF) of horses with intra-articular injury and synovitis, and to provide a new strategy for regeneration of lost articular cartilage. Mesenchymal stromal cells were isolated from SF of horses with IAF and OCD. Multipotency was analysed by RT-PCR for specific mRNAs and staining for production of specific extracellular matrices after induction of differentiation. The total number of SF-derived mesenchymal stromal cells reached >1 × 10(7) by the fourth passage. SF-derived cells were strongly positive (>90% cells positive) for CD44, CD90 and major histocompatibility complex (MHC) class I, and moderately positive (60-80% cells positive) for CD11a/CD18, CD105 and MHC class II by flow cytometry. SF-derive...
International Journal of Molecular Sciences
Cartilage engineering is a new strategy for the treatment of cartilage damage due to osteoarthritis or trauma in humans. Racehorses are exposed to the same type of cartilage damage and the anatomical, cellular, and biochemical properties of their cartilage are comparable to those of human cartilage, making the horse an excellent model for the development of cartilage engineering. Human mesenchymal stem cells (MSCs) differentiated into chondrocytes with chondrogenic factors in a biomaterial appears to be a promising therapeutic approach for direct implantation and cartilage repair. Here, we characterized equine umbilical cord blood-derived MSCs (eUCB-MSCs) and evaluated their potential for chondrocyte differentiation for use in cartilage repair therapy. Our results show that isolated eUCB-MSCs had high proliferative capacity and differentiated easily into osteoblasts and chondrocytes, but not into adipocytes. A three-dimensional (3D) culture approach with the chondrogenic factors BMP-2 and TGF-β1 potentiated chondrogenic differentiation with a significant increase in cartilage-specific markers at the mRNA level (Col2a1, Acan, Snorc) and the protein level (type II and IIB collagen) without an increase in hypertrophic chondrocyte markers (Col10a1 and Mmp13) in normoxia and in hypoxia. However, these chondrogenic factors caused an increase in type I collagen, which can be reduced using small interfering RNA targeting Col1a2. This study provides robust data on MSCs characterization and demonstrates that eUCB-MSCs have a great potential for cartilage tissue engineering.