Effect of different type of media on in vitro regeneration of mulberry (Morus indica): An economically important tree (original) (raw)

Micropropagation of Mulberry (Morus alba L.) Through In vitro Culture of Shoot tip and Nodal Explants

A high frequency of sprouting (80%) from nodal-and (70%) from shoot tip explants and shoot differentiation was observed in the primary cultures of Morus alba L. on MS medium supplemented with BAP and Kn. In vitro proliferated shoots were multiplied rapidly by culture of shoot tips and nodal explants on MS with BAP (2 mg/l) and NAA (0.2 mg/l) as supplements. This combination proved best for multiple shoot formation. Multiplication was also achieved by culture of both the kinds of explants on MS fortified with BAP (2 mg/l) + NAA (0.2 mg/l) + aspargine (25 mg/l) + glutamine (1 mg/l). This medium facilitated the elongation of shoots and sprouting of axillary buds of in vitro grown shoots. About 80% rooting was obtained from shoots cultured on the MS supplemented with NAA (1.0 mg/l). Plants with well developed roots were transferred to soil with survival frequency of 70%.

In Vitro Plant Regeneration of Morus indica L. cv. V1 Using Leaf Explant

American Journal of Plant Sciences, 2013

Adventitious bud induction and plantlet regeneration were studied in a popular mulberry variety, V1 using leaf as an explant. Fully expanded leaf explants were cultured on Murashige and Skoog's (MS) medium supplemented with thidiazuron (TDZ) (0.5-4.0 mg/l), 6-benzylaminopurine (BAP) (0.5-2.0 mg/l), indole acetic acid (IAA) (2.0 mg/l), gibberlic acid (GA 3) (1.0-2.0 mg/l) silver nitrate (AgNO 3) (2.0 mg/l) and different carbon sources such as sucrose, fructose and glucose (10%-30%) either individually or in combination to induce adventitious buds and regeneration. The highest percentage (63%) of adventitious bud formation and regeneration (68%) was achieved in the medium containing MS with TDZ (1.0 mg/l), IAA (2.0 mg/l) and AgNO 3 (2.0 mg/l). For subsequent regeneration and shoot elongation the MS medium having BAP (1.0 mg/l), GA3 (2.0 mg/l) and AgNO 3 (2.0 mg/l) was found to be suitable. Amongst the carbon sources tested, the most suitable carbon source was found to be sucrose (3%) followed by fructose (2%) for adventitious bud formation. Excised in vitro shoots were rooted (60%-80%) in half strength MS medium supplemented with indole-3-butyric acid (1.0 mg/l). The well rooted plantlets were hardened in soil + sand + farm yard manure (FYM) mixture with a success rate of 70%-90%. Since in vitro regeneration is highly genotype-dependent in mulberry, the standardized protocol can be effectively used for further improvement of this leading genotype using biotechnological approaches.

An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L variety V1

An efficient in vitro protocol for multiple shoot induction was standardized using nodal segment explant in a most popular mulberry, Morus alba variety V1. Explants collected from the field grown plants were cultured on Murashige and Skoog (MS) medium supplemented with different concentration/combination(s) of phytohormones. Multiple shoots were induced from the nodal segments after 45 days of incubation on shoot induction medium containing MS with BAP (1.0 mg/l), TDZ (0.1 mg/l) and NAA (0.25 mg/l). Further proliferation and elongation of adventitious buds were observed in secondary medium containing MS supplemented with BAP (1.0 mg/l), NAA (0.25 mg/l) and Gibberellic acid (GA 3, 0.5 mg/l). Rooting was induced on MS medium containing indole-3-butyric acid (IBA, 0.5 mg/l) with or without charcoal (1 %, w/v) and well rooted plantlets were hardened in sterilized soilrite. In vitro grown plantlets showed 98% survival under green house conditions. The protocol developed would be of great...

Application of Tissue Culture Techniques for Propagation and Crop Improvement in Mulberry (Morus spp

Mulberry (Morus spp.) is an economically important tree grown widely in China, India and several other countries in Asia. The major economic product of mulberry is its leaf which is used for feeding the monophagous silkworm Bombyx mori L. Mulberry leaf is also used as fodder for livestock. Mulberry fruit is good for human consumption. Although mulberry is amenable to both sexual and asexual methods of reproduction, due to the high heterozygosity of the parental lines and long juvenile periods, propagation is mainly through stem cuttings or bud grafting. However, success of propagation through stem cuttings is greatly dependent on the genotype, environment, and age of the planting materials. Besides, most of the temperate species are hard to root from the stem cuttings. Micropropagation is seen as a cost effective method for propagation of these species, though a number of factors affect the success. In this article, we summarize these factors along with the causes and remedies for them. Other applications of tissue culture such as germplasm conservation, screening for stress tolerance, triploid developments, genetic transformation, and their impacts on the sericulture industry have also been detailed and discussed.

<i>In Vitro</i> Plant Regeneration of <i>Morus indica</i> L. cv. V1 Using Leaf Explant

American Journal of Plant Sciences, 2013

Adventitious bud induction and plantlet regeneration were studied in a popular mulberry variety, V1 using leaf as an explant. Fully expanded leaf explants were cultured on Murashige and Skoog's (MS) medium supplemented with thidiazuron (TDZ) (0.5-4.0 mg/l), 6-benzylaminopurine (BAP) (0.5-2.0 mg/l), indole acetic acid (IAA) (2.0 mg/l), gibberlic acid (GA 3) (1.0-2.0 mg/l) silver nitrate (AgNO 3) (2.0 mg/l) and different carbon sources such as sucrose, fructose and glucose (10%-30%) either individually or in combination to induce adventitious buds and regeneration. The highest percentage (63%) of adventitious bud formation and regeneration (68%) was achieved in the medium containing MS with TDZ (1.0 mg/l), IAA (2.0 mg/l) and AgNO 3 (2.0 mg/l). For subsequent regeneration and shoot elongation the MS medium having BAP (1.0 mg/l), GA3 (2.0 mg/l) and AgNO 3 (2.0 mg/l) was found to be suitable. Amongst the carbon sources tested, the most suitable carbon source was found to be sucrose (3%) followed by fructose (2%) for adventitious bud formation. Excised in vitro shoots were rooted (60%-80%) in half strength MS medium supplemented with indole-3-butyric acid (1.0 mg/l). The well rooted plantlets were hardened in soil + sand + farm yard manure (FYM) mixture with a success rate of 70%-90%. Since in vitro regeneration is highly genotype-dependent in mulberry, the standardized protocol can be effectively used for further improvement of this leading genotype using biotechnological approaches.

Micropropagation of Mountain Mulberry (Morus bombycis Koidz.) ‘Kenmochi’ on Cytokinin-Free Medium

Plants

The aim of the study was to compare two methods of micropropagation of mulberry: single-node culture (“SNC”), and axillary-branching (“AxB”). The experiments were carried out on in vitro cultures for 6 successive passages. The “AxB” cultures were propagated on modified MS medium (+ 25% Ca2+ and Mg2+), supplemented with WPM vitamins, sucrose (30 g L−1), and BA (1.5 mg l-1). The “SNC” cultures were grown on cytokinin-free 1/2 MS (macro- and micronutrients) medium supplemented with WPM vitamins, IBA (0.05 mg l-1), and sucrose (15 g l-1). Both media (pH 5.8) were solidified with agar (7.0 g l-1). Initiation of in vitro cultures from explants taken from adult trees and young, potted plants was feasible on both media. Cultures were established from about 1 cm long nodal explants. Generally “SNC” cultures formed one well rooted, significantly longer axillary shoot with bigger leaves than “AxB” cultures, which developed significantly more shoots and big callus at the explant base. All shoot...

In Vitro propagation of mulberry (Morus indica) var. S-1635 from nodal explants

2016

In the present study, nodal explants from mature trees were used for axillary shoot proliferation of Morus indica var S-1635. Nodal explants (1.5cm long) were cultured in MS medium supplemented with different levels of N 6-benzyladenine (BA: 1, 2, 4, 8, 10 or 12µM) and 1-nephthaleneacetic acid (NAA: 1, 2, 3 or 4µM for each). The rate of bud break was 100% at 10µM BA in combination with either concentration of NAA (2 or 3µM) after 6 days of culture. Generally, the length of axillary shoots was significantly improved by increasing the level of BA with auxin. Most of the nodal explants (65.2%) developed surface calluses on the aerial portions of explants at comparatively lower BA levels (2-4µM). The elongating axillary shoots were cut to prepare further nodal explants for multiple shoot induction. MS medium supplemented with BA (8.8µM) and 2µM indole-3-butyric acid (IBA) was quite effective for 65% shoot induction with an average of 4.7 numbers of shoots and 8.4mm shoot length, after a...

Clonal propagation of mulberry (Morus indica L. cultivar M-5) through in vitro culture of nodal explants

Scientia Horticulturae, 1999

A high frequency of sprouting (80.0%) and shoot differentiation was observed in the primary cultures of nodal explants of Morus indica L. cultivar M-5 on MS medium supplemented with 2,4-D (0.3 mg/l). In vitro proliferated shoots were multiplied rapidly by culture of shoot tips on MS medium with BAP (0.5 and 1.0 mg/l) which produced the greatest multiple shoot formation. Multiplication was also achieved by culture of shoot tips on MS medium with BAP (4.0 mg/l) and GA 3 (0.05 mg/l) which facilitated the elongation of shoots followed by sprouting of axillary buds of in vitro grown shoots. A high frequency of rooting (86.7%) with development of healthy roots was observed from shoots cultured on medium with 2,4-D (1.0 mg/l). Plants with well developed roots were transferred to soil with a survival frequency of 80%.

A comparative study on field performance of micropropagated plants and stem cutting derived plants of S-36 cultivar of Mulberry (Morus indica L.)

Research in Biotechnology, 2016

Micropropagated and stem cutting derived plants of Mulberry (Morus indica L. cv. S-36) were transferred to the similar field conditions. A comparative study was conducted based on morphological parameters and growth characteristics for three consecutive years. The results demonstrated that micropropagation gave rise to superior clonal populations with respect to number of branches/plant and leaf yield/plant that will be suitable for the mass production of plants. Thus in vitro grown plants did not exhibit any significant quantitative variation as compared to the conventionally grown plants, indicating the varietal multiplication to be of true-to-type.

RAPID ONE STEP PROTOCOL FOR THE in vitro MICRO PROPAGATION OF Morus multicaulis VAR. GOSHOERAMI, AN ELITE MULBERRY VARIETY OF TEMPERATE REGION

Journal of Experimental Biology and Agricultural Sciences, 2018

Morus multicaulis cv. Goshoerami is the leading mulberry variety for silkworm rearing under temperate climatic conditions of Jammu and Kashmir, India. However, the propagation of this popular mulberry variety has always remained a point of contention due to its poor rooting response through stem cuttings. It normally takes 4 to 5 years for raising the saplings of this variety through conventional root grafting techniques. Therefore, for quick propagation of this poor rooting popular mulberry variety, a one step in vitro protocol was developed by culturing nodal explants from 2 year old plants on Murashige & Skoog (MS) media supplemented with individual as well as combination of phytohormones. The maximum shoot bud proliferation (6.3± 0.71 in cm) and rooting (14.7± 0.53 in cm) was observed when nodal explants were cultured on the combinational media of BAP (1 mg/L) and IBA (1 mg/L) after 14 days of culture. These in vitro raised plantlets were hardened by using the sterile soil and vermiculite in 2:1 ratio. Only 25 days were required for the micro propagation and hardening of raised plantlets of Goshoerami through this single step protocol. The hardened plantlets were successfully established in the field with 83% survival rate. The developed one step protocol can be used efficiently for the mass propagation of this elite mulberry variety throughout the year with in short span of 25 days.