Breathing modes of long Josephson junctions with phase-shifts (original) (raw)
2010
We consider a spatially inhomogeneous sine-Gordon equation with a time-periodic drive, modeling a microwave driven long Josephson junction with phase-shifts. Under appropriate conditions, Josephson junctions with phase-shifts can have a spatially nonuniform ground state. In recent reports, it is experimentally shown that a microwave drive can be used to measure the eigenfrequency of a junction's ground state. Such a microwave spectroscopy is based on the observation that when the frequency of the applied microwave is in the vicinity of the natural frequency of the ground state, the junction can switch to a resistive state, characterized by a non-zero junction voltage. It was conjectured that the process is analogous to the resonant phenomenon in a simple pendulum motion driven by a time periodic external force. In the case of long junctions with phase-shifts, it would be a resonance between the internal breathing mode of the ground state and the microwave field. Nonetheless, it was also reported that the microwave power needed to switch the junction into a resistive state depends on the magnitude of the eigenfrequency to be measured. Using multiple scale expansions, we show here that an infinitely long Josephson junction with phase-shifts cannot be switched to a resistive state by microwave field with frequency close to the system's eigenfrequency, provided that the applied microwave amplitude is small enough, which confirms the experimental observations. It is because higher harmonics with frequencies in the continuous spectrum are excited, in the form of continuous wave radiation. The presence of applied microwaves balances the nonlinear damping, creating a stable breather mode oscillation. We confirm our analytical results numerically.
Related papers
Influence of strong microwave radiation on static properties of a small Josephson junction
Preliminary results are presented concerning static properties of a small Josephson junction under the influence of strong microwave radiation. We discuss the correspondence between a Brownian particle moving in a periodic potential and superconducting phase difference in a small Josephson junction. Next, we describe an experimental method of determining the amplitude of microwave current flowing across the junction. Typical examples of static characteristics of the junction are presented, including its dynamical resistance as a function of microwave power. We discuss also the influence of an external magnetic field on the junction dynamics and show that in this case the one-dimensional Stewart-McCumber model becomes insufficient. Comment: 6 pages, 6 figures, Revtex4
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.