Evolution of Repeated Sequence Arrays in the D-Loop Region of Bat Mitochondrial DNA (original) (raw)
Related papers
Length and sequence variation in evening bat D-loop mtDNA
Genetics, 1991
Length variation in D-loop mitochondrial DNA was observed after amplification with the polymerase chain reaction (PCR) in 28% of 195 evening bats, Nycticeius humeralis, from seven colonies. Nucleotide sequences of PCR products show that this heteroplasmy is characterized by an 81-bp region which is tandemly repeated five to eight times. Southern blots using PCR products as probes on HaeIII genomic digests confirm the presence of heteroplasmy. Furthermore, densitometry of electrophoresed PCR products from 109 mother-offspring pairs indicate that heteroplasmy is stably transmitted from mother to offspring with one exception: a heteroplasmic offspring had a homoplastic mother and sib. Nucleotide sequences from this family reveal that a repeat duplication and deletion occurred. The observed mutation rate per generation, mu, for length polymorphism is comparable to an independent estimate, mu = 10(-2), based on hierarchical diversity statistics. With the exception of the repeat nearest t...
Implications for Bat Evolution from Two New Complete Mitochondrial Genomes
Molecular Biology and Evolution, 2001
Mitochondrial genomes are useful in the quantitative analysis of vertebrate evolution. We report here the complete mitochondrial genomes for a megabat (the flying fox, Pteropus scapulatus) and a microbat (the New Zealand long-tailed bat, Chalinolobus tuberculatus). The evolutionary history of bats (chiroptera) has been uncertain, and even the monophyly of this group has been questioned. The new sequences allow five questions to be addressed: the position of bats within eutheria, whether bats are monophyletic, whether microbats are paraphyletic with respect to megabats, the approximate timing of the origin of bats, and whether some insectivores (e.g., moles) form a sister group with bats. In order to examine these questions, we analyzed two data sets (both separately and combined), one with 12 protein-coding regions and the other with RNA (combined ribosomal RNAs and tRNAs). The results are congruent, support bat monophyly, and place bats close to the cetferungulates (whales [cetaceans] plus ferungulates [carnivores, ungulates, and perissodactyls]).
Journal of Molecular Evolution
We describe a repetitive DNA region at the 3' end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif "ACGT." Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy. By acceptance of this article, the publisher acknowledges the right of the US Government to retain non-exclusive, royalty-free license in and to any copyright covering the article.
2015
Deer in the genera Mazama and Odocoileus generally have two copies of a 75–base-pair (bp) repeat in the left domain of the control region of the mitochondrial DNA (mtDNA). Phylogenetic analyses further suggest an ancient origin for the duplication supporting a previously stated contention that this event occurred before the separation of Mazama and Odocoileus. However, white-tailed deer (Odocoileus virginianus) had three or four copies of a 75-bp repeat in the control region of their mtDNA in 7.8 % of the individuals analyzed, and all of these animals were from the coastal plain of the southeastern United States. When copy 3 is present, it is very similar in sequence to copy 2, but variation suggests that copy 3 probably evolved multiple times from copy 2. The pattern of phylogenetic clustering of the haplotypes from across the coastal plain also suggests that phenotypes with three or four copies of the repeat have originated multiple times. The 44 observed haplotypes showed strong ...
Sindicic et al Mitochondrial DNA 2012
Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1 -RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5 0 end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3 0 end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.
Mammalian Biology - Zeitschrift für Säugetierkunde, 2009
There have been few studies of the structural and evolutionary characteristics of the mitochondrial control region (CR) in rhinolophids, yet this could have important consequences for the interpretation of phylogenetic relationships within this group. Here we sequenced and analyzed the CR of 37 individuals from 12 Rhinolophus species, including 2 species from GenBank. The length of the CR ranged from 1335 to 1514 bp, and the base composition was very similar among species. The CR of horseshoe bats, like that of other mammals, could be subdivided into a central conserved domain (CD) and two flanking variable domains, extended termination associated sequences (ETAS), and conserved sequence blocks (CSB). Besides the common conserved blocks (ETAS1, ETAS2, F-B boxes, CSB1, CSB2 and CSB3) found in 3 domains, an ETAS2-like and a CSB1-like element were also detected in the ETAS and CSB domains, respectively, in all individuals. Notwithstanding a short tandem repeat (11 or 13 bp) between CSB1 and CSB2 in all specimens, the base composition, copy number and arrays are all variable. A long tandem repeat (79 bp) was only identified in the ETAS domain in one individual of R. pusillus. Phylogenetic reconstructions based on the CR sequences indicated that the molecular phylogenetic relationships among some Rhinolophus species were inconsistent with the results of phenetic analyses, but similar to phylogenetic constructions using cytochrome b. An unidentified species R. sp and 3 species from the philippinensis-group that were clearly morphologically different comprised a monophyletic group, which could have resulted from morphological independent evolution.
Rapid evolution of animal mitochondrial DNA
Proceedings of the …, 1979
Mitochondrial DNA was purified from four species of higher primates (Guinea baboon, rhesus macaque, guenon, and human) and digested with 11 restriction endonucleases. A cleavage map was constructed for the mitochondrial DNA of each species. Comparison of the maps, aligned with respect to the origin and direction of DNA replication, revealed that the species differ from one another at most of the cleavage sites. The degree of divergence in nucleotide sequence at these sites was calculated from the fraction of cleavage sites shared by each pair of species. By plotting the degree of divergence in mitochondrial DNA against time of divergence, the rate of base substitution could be calculated from the initial slope of the curve. The value obtained, 0.02 substitutions per base pair per million years, was compared with the value for single-copy nuclear DNA. The rate of evolution of the mitochondrial MAnome appears to exceed that of the single-copy fraction of the nuclear genome by a factor of about 10. This high rate may be due, in part, to an elevated rate of mutation in mitochondrial DNA. Because of the high rate of evolution, mitochondrial DNA is likely to be an extremely useful molecule to employ for high-resolution analysis of the evolutionary process.
Genetics, 1994
Tandem duplications of gene-encoding regions occur in the mitochondrial DNA (mt DNA) of some individuals belonging to several species of whiptail lizards (genus Cnemidophorus). All or part of the duplicated regions of the mtDNAs from five different species were sequenced. In all, the duplication endpoints were within or immediately adjacent to sequences in tRNA, rRNA or protein genes that are capable of forming energetically stable stem-and-loop structures. In two of these mtDNAs, the duplication endpoints were also associated with a direct sequence repeat of 13 bp. The consistent association of stem-and-loop structures with duplication endpoints suggests that these structures may play a role in the duplication process. These data, combined with the absence of direct or palindromic repeats at three of the pairs of duplication endpoints, also suggest the existence of a mechanism for generating de novo duplications that is qualitatively different from those previously modeled.
Current Genetics, 1995
We have analyzed a variable domain of the mitochondrial DNA control region of 18 avian species. intra-individual length variation was identified and characterized in 15 species. The occurrence of heteroplasmy among species is phylogenetically consistent with a current classification of birds. Polymerase chain reaction amplifications, direct sequencing, and Southern analysis of mitochondrial DNA showed that the heteroplasmy is due to variable numbers of direct repeats in a tandem organization, located in the control region close to the tRNAPhe gene. The tandem repeats consist of short sequence motifs that vary in size from 4 to 32 base pairs between species. Sequence complexity of the repeat motifs was low, with almost exclusively Ts and Gs in the heavy-strand. Extensive variation in the copy number of the repeats was seen both intra-specifically and within individuals. This is the first report of mitochondrial heteroplasmy characterized at the sequence level in birds.
Rapid concerted evolution in animal mitochondrial DNA
2007
Recombinational genetic processes are thought to be rare in the uniparentally inherited mitochondrial (mt) DNA molecules of vertebrates and other animals. Here, however, we document extremely rapid concerted microevolution, probably mediated by frequent gene conversion events, of duplicated sequences in the mtDNA control region of mangrove killifishes (Kryptolebias marmoratus). In local populations, genetic distances between paralogous loci within an individual were typically smaller (and often zero) than those between orthologous loci in different specimens. These findings call for the recognition of concerted evolution as a microevolutionary process and gene conversion as a likely recombinational force in animal mtDNA. The previously unsuspected power of these molecular phenomena could greatly impact mtDNA dynamics within germ cell lineages and in local animal populations.