Stability constants for Zirconium(IV) complexes with EDTA, CDTA, and DTPA in perchloric acid solutions (original) (raw)

Abstract

We quantified the stability constants of Zr(IV) with ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA), trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA), and diethylenetriamine-N,N,N',N'',N''-pentaacetic acid (DTPA) in 0.75-1.00 mol•L −1 HClO4 with 1.00 mol•L −1 total ionic strength using a liquid-liquid extraction technique. The data indicated the formation of ubiquitous 1:1 complexes, but also newly reported 1:2 metal-ligand complexes. The 1:1 complexes were identified as Zr(EDTA) 0 (log10 β101 = 27.9 ± 0.1), Zr(CDTA) 0 (log10 β101 = 29.6 ± 0.2), and Zr(DTPA) − (log10 β101 = 35.3 ± 0.3), and the newly identified bis-complexes as Zr(EDTA)2 4− (log10 β102 = 54.4 ± 0.2), ZrH4(CDTA)2 0 (log10 β142 = 58.5 ± 0.5), and ZrH8(DTPA)2 2+ (log10 β182 = 70.3 ± 0.4). The quantification of the stability constants described above required determining acid dissociation constants for EDTA and DTPA at varied ionic strength at 25.0 ± 0.1°C by potentiometric titration, and the Specific ion Interaction Theory (SIT) model was used to correlate the acid dissociation constants with ionic strength. The resulting thermodynamic constants at zero ionic strength from this analysis for EDTA were: pKa3° = 2.21 ± 0.06, pKa4° = 3.21 ± 0.06, pKa5° = 6.76 ± 0.09, and pKa6° = 10.27 ± 0.03, and for 2 DTPA were: pKa4° = 2.31 ± 0.02, pKa5° = 3.23 ± 0.07, pKa6° = 4.96 ± 0.05, pKa7° = 9.51 ± 0.05, and pKa8° = 11.21 ± 0.05.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (45)

  1. G.R. Choppin, J.-O. Liljenzin, J. Rydberg, C. Ekberg, Chapter 21, The Nuclear Fuel Cycle, in: G.R. Choppin, J.-O.
  2. Liljenzin, J. Rydberg, C. Ekberg (Eds.), Radiochemistry and Nuclear Chemistry, 4 th ed., Academic Press, Oxford, 2013, pp. 696,726.
  3. C. Musikas, W.W. Schulz, J.-O. Liljenzin, Chapter 12. Solvent Extraction in Nuclear Science and Technology, in: J. Rydberg, M. Cox, C. Musikas, G.R. Choppin (Eds.), Solvent Extraction Principles and Practice, 2 nd ed., Marcel Dekker, Inc., New York, 2004, pp. 522.
  4. J.V. Holder, A Review of the Solvent Extraction Process Chemistry of Fission Products, Radiochim. Acta 25 (1978) 171-180.
  5. J.M. McKibben, Chemistry of the Purex process, Radiochim. Acta 36 (1984) 3-15.
  6. D.J. Pruett, Chapter 2. Extraction Chemistry of Fission Products, in: W.W. Schulz, L.L. Burger, J.D. Navratil (Eds.), Science and Technology of Tributyl Phosphate, Vol. III, CRC Press, Boca Raton, 1990, pp. 81-121.
  7. K.L. Nash, C. Madic, J.N. Mathur, J. Lacquement, Chapter 24. Actinide Separation Science and Technology, in: L.R. Morss, N.M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, Vol. 4, 3 rd ed., Springer, Dordrecht, 2006, pp. 2624.
  8. M. Sypula, A. Wilden, C. Schreinemachers, R. Malmbeck, A. Geist, R. Taylor, G. Modolo, Use of Polyaminocarboxylic Acids as Hydrophilic Masking Agents for Fission Products in Actinide Partitioning Processes, Solvent Extr. Ion Exch. 30 (2012) 748-764.
  9. B.S. Matteson, P. Tkac, A. Paulenova, Complexation Chemistry of Zirconium(IV), Uranium(VI), and Iron(III) with Acetohydroxamic Acid, Sep. Sci. Technol. 45 (2010) 1733-1742.
  10. A.V. Gelis, G.J. Lumetta, Actinide Lanthanide Separation Process-ALSEP, Ind. Eng. Chem. Res. 53 (2014) 1624-1631.
  11. M. Carrott, A. Geist, X. Hères, S. Lange, R. Malmbeck, M. Miguirditchian, G. Modolo, A. Wilden, R. Taylor, Distribution of plutonium, americium and interfering fission products between nitric acid and a mixed organic phase of TODGA and DMDOHEMA in kerosene, and implications for the design of the "EURO-GANEX" process, Hydrometallurgy 152 (2015) 139-148.
  12. M.A. Deri, B.M. Zeglis, L.C. Francesconi, J.S. Lewis, PET imaging with 89 Zr: From radiochemistry to the clinic, Nucl. Med. Biol. 40 (2013) 3-14.
  13. E. Bottari, G. Anderegg, Komplexone XLII. Die Untersuchung der 1:1-Komplexe von einigen drei-und vierwertigen Metall-Ionen mit Polyaminocarboxylaten mittels Redoxmessungen, Helv. Chim. Acta 50 (1967) 2349-2356.
  14. G. Anderegg, Critical Survey of Stability Constants of EDTA Complexes: Critical Evaluation of Equilibrium Constants in Solution Part A: Stabiltiy Constants of Metal Complexes (IUPAC Publications), Pergamon Press, Oxford, 1977, pp. 16.
  15. J. Prášilová, J. Havlíček, Determination of stability constants of some complexes of zirconium using dinonyl naphthalene sulphonic acid as liquid ion exchanger, J. Inorg. Nucl. Chem. 32 (1970) 953-960.
  16. R.M. Smith, A. Martell, R. Motekaitis, NIST Critically Selected Stability Constants of Metal Complexes Database, Ver. 8.0, NIST Standard Reference Database 46, National Institute of Standards and Technology (2004).
  17. W. Hummel, G. Anderegg, I. Puigdomenech, L. Rao, O. Tochiyama, Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands, in: OECD Nuclear Energy Agency, Chemical Thermodynamics, Vol 9, Elsevier, New York, 2005.
  18. J. Mizera, A.H. Bond, G.R. Choppin, R.C. Moore, Dissociation Constants of Carboxylic Acids at High Ionic Strengths, in: D.T. Reed, S.B. Clark, L. Rao (Eds.), Actinide Speciation in High Ionic Strength Media, Springer, New York, 1999, pp 113-124.
  19. P. Thakur, J.N. Mathur, R.C. Moore, G.R. Choppin, Thermodynamics and dissociation constants of carboxylic acids at high ionic strength and temperature, Inorg. Chim. Acta 360 (2007) 3671-3680.
  20. M.T. Friend, P. Zhao, M. Zavarin, N.A. Wall, Complexation of Plutonium(IV) with trans-1,2- Diaminocyclohexane-N,N,N',N'-tetraacetic Acid (CDTA) in Acidic Solution, J. Solution Chem. Submitted (2018).
  21. R.E. Connick, W.H. McVey, The Aqueous Chemistry of Zirconium, J. Am. Chem. Soc. 71 (1949) 3182-3191.
  22. R.E. Connick, W.H. Reas, The Hydrolysis and Polymerization of Zirconium in Perchloric Acid Solution, J. Am. Chem. Soc. 73 (1951) 1171-1176.
  23. A.J. Zielen, R.E. Connick, The Hydrolytic Polymerization of Zirconium in Perchloric Acid Solutions, J. Am. Chem. Soc. 78 (1956) 5785-5792.
  24. J.F. Jenkins, K.L. Nash, J.C. Sullivan, Kinetics of the Complexation Reactions between Th(IV), Zr(IV), and Chlorophosphonazo III, Radiochim. Acta 68 (1995) 215-219.
  25. C.F. Baes, R.E. Mesmer, The Hydrolysis of Cations, John Wiley & Sons Inc., New York, 1976, pp 152-158.
  26. P. Pakalns, Depolymerisation of zirconium in spectrophotometry with arsenazo III, Anal. Chim. Acta 44 (1969) 73-83.
  27. G. Gran, Determination of the Equivalence Point in Potentiometric Titrations. Part II, Analyst 77 (1952) 661- 671.
  28. P. Gans, B. O'Sullivan, GLEE, a new computer program for glass electrode calibration, Talanta 51 (2000) 33- 37.
  29. P. Gans, A. Sabatini, A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs, Talanta 43 (1996) 1739-1753.
  30. K.J. Swearingen, T. Omoto, N. Wall, Analysis of organic and high dissolved salt content solutions using inductively coupled plasma optical emission spectrometry, J. Anal. At. Spectrom. 32 (2017) 1297-1305.
  31. S.-I.
  32. Aizawa, T. Natsume, K. Hatano, S. Funahashi, Complexation equilibria and structures of dimethyltin(IV) complexes with N-methyliminodiacetate, pyridine-2,6-dicarboxylate, ethylenediamine-N,N'-diacetate and ethylenediamine-N,N,N',N'-tetraacetate, Inorg. Chim. Acta 248 (1996) 215-224.
  33. E. Chinea, S. Domínguez, A. Mederos, F. Brito, J.M. Arrieta, A. Sánchez, G. Germain, Nitrilotriproprionic Acid (NTP) and Other Polyamino Carboxylic Acids as Sequestering Agents for Beryllium(II). X-ray Crystal Structure of Sodium (Nitrilotripropionato)beryllate(II) Trihydrate, Na[Be(NTP)]•3H2O, Inorg. Chem. 34 (1995) 1579-1587.
  34. N. Oyama, H. Matsuda, H. Ohtaki, A Potentiometric Study on Complex Formation of Cadmium(II) and Lead(I) Ions with Ethylenediaminetetraacetic Acid, Bull. Chem. Soc. Jpn 50 (1977) 406-409.
  35. J. Kragten, L.G. Decnop-Weever, Solubility and protonation of EDTA, DCTA and DPTA in acidic perchlorate medium, Talanta 30 (1983) 623-626.
  36. G. Anderegg, Komplexone XL. Die Protonierungskonstanten einiger Komplexone in verschidenen wässerigen Salzmedien (NaClO4, (CH3)4NCl, KNO3), Helv. Chim. Acta 50 (1967) 2333-2340.
  37. P. Caravan, C. Comuzzi, W. Crooks, T.J. McMurry, G.R. Choppin, S.R. Woulfe, Thermodynamic Stability and Kinetic Inertness of MS-325, a New Blood Pool Agent for Magnetic Resonance Imaging, Inorg. Chem. 40 (2001) 2170-2176.
  38. G. Anderegg, F. Neu-Arnaud, R. Delgado, J. Felcman, K. Popov, Critical Evaluation of Stability Constants of Metal Complexes of Complexones for Biomedical and Environmental Applications, Pure Appl. Chem. 77 (2005) 1445-1495.
  39. G. Tian, L. Rao, Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic and Diethylenetrinitopentaacetic Acids, Sep. Sci. Technol. 45 (2010) 1718-1724.
  40. T.S. Grimes, K.L. Nash, K. L., Acid Dissociation Constants and Rare Earth Stability Constants for DTPA, J. Solution Chem. 43 (2014) 298-313.
  41. C. Ekberg, G. Källvenius, Y. Albinsson, P.L. Brown, Studies on the Hydrolytic Behavior of Zirconium(IV), J. Solution Chem. 33 (2004) 47-79.
  42. A.M. Poskanzer, B.M. Foreman, A summary of TTA extraction coefficients, J. Inorg. Nucl. Chem. 16 (1961) 323-336.
  43. G.R. Choppin, A.H. Bond, M. Borkowski, M.G. Bronikowski, J.F. Chen, N.A. Labonne-Wall, S. Lis, J. Mizera, R.C. Moore, O. Pokrovsky, Y.-X. Xia, Waste Isolation Pilot Plant Actinide Source Term Test Program: Solubility Studies and Development of Modeling Parameters, SAND-99-0943, Sandia National Laboratories, Albuquerque, 2001, pp. 73-74,378.
  44. H. Boukhalfa, S.D. Reilly, W.H. Smith, M.P. Neu, EDTA and Mixed-Ligand Complexes of Tetravalent and Trivalent Plutonium, Inorg. Chem. 43 (2004) 5816-5823.
  45. M.T. Beck, S. Görög, Water solubility of ethylenediamine and cyclohexandiaminetetraacetic acid as a function of acidity, Acta Chim. Acad. Sci. Hung. 22 (1960) 159; Chemist Analyst 48 (1959) 90.