HVDC Systems in Smart Grids (original) (raw)
Related papers
Overview and Assessment of HVDC Current Applications and Future Trends
Energies, 2022
High voltage direct current (HVDC) technology has begun to gather a high degree of interest in the last few decades, showing a fast evolution of achievable voltage levels, transfer capacities, and transmission lengths. All these changes occurred in a context in which power system applications are highly dependent on HVDC technologies such as energy generation from renewable sources (e.g., energy generated in offshore wind power plants), power exchanges between asynchronous networks, submarine cables, and long-length transmission overhead lines have become more common worldwide. This paper tries to summarize the current state of HVDC technologies, both voltage-source converters and current-source converters, the main components of converter substations, control strategies, key challenges arising from their use, as well as the future prospects and trends of HVDC applications. This paper represents the first step in setting the background information for analyzing the impact of a VSC-H...
Trends for future HVDC Applications
During their development, power systems become more and more interconnected and heavily loaded. With the increasing size and complexity of systems and as the result of the liberalization of the electrical markets, needs for innovative applications and technical improvements of the grids will further increase. HVDC plays an important role for these tasks. Commercial applications of HVDC started in the 1950ies. In the meantime, HVDC became a reliable and economically important alternative for AC transmission, offering advantages in the operation of power systems in addition to the power transfer. The paper discusses expected present and future HVDC applications. Integration of HVDC into AC systems will be used more frequently as it can simplify the system configuration, control load flow and, at the same time, it improves the dynamic system performance and increases the system reliability. For the interconnection of large power systems HVDC offers technical and economical advantages, especially if the interconnection is weak. The connection of remote power stations to the system, e.g. offshore wind generation, can be effectively put into practice by means of HVDC. Advantages of these applications will be discussed and demonstrated by implemented projects. KEY WORDS: Power system development, use of HVDC, types of HVDC transmissions, integration of HVDC into AC systems, project examples
VSC-Based HVDC Power Transmission Systems: An Overview
IEEE Transactions on Power Electronics, 2000
The ever increasing progress of high-voltage highpower fully controlled semiconductor technology continues to have a significant impact on the development of advanced power electronic apparatus used to support optimized operations and efficient management of electrical grids, which, in many cases, are fully or partially deregulated networks. Developments advance both the HVdc power transmission and the flexible ac transmission system technologies. In this paper, an overview of the recent advances in the area of voltage-source converter (VSC) HVdc technology is provided. Selected key multilevel converter topologies are presented.
2019
The recent developments in high power rated Voltage Source Converters (VSCs) and the control strategies have resulted in their successful application in HVDC transmission systems, which have become an attractive option for renewable energy applications or for distribution power in large metropolitan areas. A 153 order multipleinput multiple-output (MIMO) small-signal model of DC network model based on VSC-HVDC system and controls is developed in state-space form within MATLAB. The optimum values of the controller gains are selected by analyzing the root locus of the analytical model. The developed small-signal detailed models are linearized and implemented in MATLAB. The validity and accuracy of the proposed models are verified against nonlinear PSCAD/ EMTDC and a summary of the model structure and controls is presented in detailed. Confirmation of the effectiveness of optimization gains is done by simulating the modelled system in MATLAB and PSCAD software. There simulation results...
Challenges arising from use of HVDC
Proceedings of the Nordic Insulation Symposium, 2018
Direct Current (DC) power systems have been in use since the early 1880s. However, for more than 100 years the 3 phase AC transmission system has been the dominant transmission system for electric power. The main reason for this is the ease of changing voltage levels and grid connection using reliable AC transformers and breakers. During the last 60 years new converter technology has made HVDC the most efficient and economical long distance point to pointpower transmission transportation. In order to satisfy the growing demand of electric energy consumption, new high capacity multi-terminal HVDC systems need to be developed. This is considered an enabling technology for access to remote renewable energy sources such as off-shore wind farms, hydroelectric power and desert solar plants.This review shows that acceptable solutions have to be found to interrupt HVDC short circuit currents. Higher voltage means that new types of reliable HVDC insulation systems have to be developed, incl...
High Voltage Direct Current (HVDC)Transmission Systems Technology Review Paper
Synopsis Beginning with a brief historical perspective on the development of High Voltage Direct Current (HVDC) transmission systems, this paper presents an overview of the status of HVDC systems in the world today. It then reviews the underlying technology of HVDC systems, and discusses the HVDC systems from a design, construction, operation and maintenance points of view. The paper then discusses the recent developments in HVDC technologies. The paper also presents an economic and financial comparison of HVDC system with those of an AC system; and provides a brief review of reference installations of HVDC systems. The paper concludes with a brief set of guidelines for choosing HVDC systems in today's electricity system development.
Modeling and control of HVDC grids: A key challenge for the future power system
2014 Power Systems Computation Conference, 2014
HVDC technology is developing fast and HVDC grids are increasingly seen as a possible and feasible solution to manage the future power system with large amounts of renewables in a secure and cost-effective manner. However, systems with significant amounts of DC transmission behave in a fundamentally different manner when compared to the traditional AC power system. The integration of HVDC systems introduces new fast dynamics on different time frames and adds controllability to the combined system. As a result, the modeling and control of the entire interconnected system needs to be reevaluated in order to accurately compute the system behavior, both from the AC and DC system. This survey paper gives an overview of the current research in the field of HVDC grids focusing on the interaction of the AC and DC system. The converters and their behavior are discussed in greater detail. A second component which is discussed is the DC breaker. Both devices operate fundamentally different than their AC counterparts. The fast interaction between AC and DC systems requires changes in the manner in which the modeling and computation of the system is done, both at the DC and the AC side. Although these considerations are needed within all relevant time frames, two relevant cases are specifically addressed in this paper: the connection of offshore wind power through a HVDC system and the optimal operation of the power system with a strong presence of HVDC.
FACTS and HVDC Technologies for the
2011
The fast development of power electronics based on new and powerful semiconductor devices has led to innovative technologies, such as high voltage dc transmission (HVDC) and flexible ac transmission system (FACTS), which can be applied in transmission and distribution systems. This paper has discussed the application of high voltage power electronics FACTS and HVDC controllers, needs of advance FACTS and HVDC based control for future power system and enhancing system stability and its development. HVDC and FACTS offer major advantages in meeting these requirements. Keywords—Flexible ac transmission system FACTS), High-voltage dc transmission (HVDC), FACTS devices, Power system development and reliability, power system controllers
Impact of Grid Forming Power Converters on the Provision of Grid Services through VSC-HVdc Systems
2021
High Voltage dc (HVdc) transmission systems have gained increased popularity as a flexible and efficient power transmission option with higher grid controllability. Widespread adoption of HVdc systems for interconnecting power systems and integrating large renewable energy generation facilities such as wind farms, has forced the power system to undergo a transition from a predominantly ac system into a hybrid ac-dc system, specially in the high voltage transmission grid. This paper attempts to provide an overview on the role of Voltage Source Converter based HVdc(VSC-HVdc) systems within the evolving power system as a grid services provider. Special attention is paid to discuss the impact of Grid Forming converter control approach on the provision of such services through VSC-HVdc systems.
IEEE Power and Energy Magazine, 2019
With increased integration of renewable energy generation, high-voltage direct current (HVdc) will become more prevalent in the power system. Anticipated annual growth rates are in the range of 7-10%. While most systems in operation and under construction are point-to-point connections, the first multiterminal HVdc systems have already been commissioned. As a next step, HVdc grids are being considered as a cost-effective solution to transmit power. These HVdc grids are expected to gradually develop from existing point-to-point links, mirroring the development of ac grids throughout the 20 th century. Such HVdc grids will be an integral part of the power system, operating as a separate transmission layer of the future hybrid ac/dc network. DC substations will constitute an integral part of HVdc grids. These substations will differ from the typical dc converter station of existing point-to-point connections and from ac substations. In this article, we discuss the similarities and differences between dc substations and their ac counterparts in terms of layout, technologies, and requirements.