Carbide Precipitation during Processing of Two Low-Alloyed Martensitic Tool Steels with 0.11 and 0.17 V/Mo Ratios Studied by Neutron Scattering, Electron Microscopy and Atom Probe (original) (raw)

Two industrially processed low-alloyed martensitic tool steel alloys with compositions Fe-0.3C-1.1Si-0.81Mn-1.5Cr-1.4Ni-1.1Mo-0.13V and Fe-0.3C-1.1Si-0.81Mn-1.4Cr-0.7Ni-0.8Mo-0.14V (wt.%) were characterized using small-angle neutron scattering (SANS), scanning electron microscopy (SEM), Scanning transmission electron microscopy (STEM), and atom probe tomography (APT). The combination of methods enables an understanding of the complex precipitation sequences that occur in these materials during the processing. Nb-rich primary carbides form at hot working, while Fe-rich auto-tempering carbides precipitate upon quenching, and cementite carbides grow during tempering when Mo-rich secondary carbides also nucleate and grow. The number density of Mo-rich carbides increases with tempering time, and after 24 h, it is two to three orders of magnitude higher than the Fe-rich carbides. A high number density of Mo-rich carbides is important to strengthen these low-alloyed tool steels through pre...