Malaria Morbidity in Children in the Year after They Had Received Intermittent Preventive Treatment of Malaria in Mali: A Randomized Control Trial (original) (raw)

Morbidity from Malaria in Children in the Year after They Had Received Intermittent Preventive Treatment of Malaria: A Randomised Trial

PLoS ONE, 2011

Background: Interventions that reduce exposure to malaria infection may lead to delayed malaria morbidity and mortality. We investigated whether intermittent preventive treatment of malaria in children (IPTc) was associated with an increase in the incidence of malaria after cessation of the intervention. Methods: An individually randomised, trial of IPTc, comparing three courses of sulphadoxine pyrimethamine (SP) plus amodiaquine (AQ) with placebos was implemented in children aged 3-59 months during the 2008 malaria transmission season in Burkina Faso. All children in the trial were given a long lasting insecticide treated net; 1509 children received SP+AQ and 1505 received placebos. Passive surveillance for malaria was maintained until the end of the subsequent malaria transmission season in 2009, and active surveillance for malaria infection, anaemia and malnutrition was conducted. Results: On thousand, four hundred and sixteen children (93.8%) and 1399 children (93.0%) initially enrolled in the intervention and control arms of the trial respectively were followed during the 2009 malaria transmission season. During the period July 2009 to November 2009, incidence rates of clinical malaria were 3.84 (95%CI; 3.67-4.02) and 3.45 (95%CI; 3.29-3.62) episodes per child during the follow up period in children who had previously received IPT or placebos, indicating a small increase in risk for children in the former intervention arm (IRR = 1.12; 95%CI 1.04-1.20) (P = 0.003). Children who had received SP+AQ had a lower prevalence of malaria infection (adjusted PR: 0.88 95%CI: 0.79-0.98) (P = 0.04) but they had a higher parasite density (P = 0.001) if they were infected. There was no evidence that the risks of moderately severe anaemia (Hb,8 g/dL), wasting, stunting, or of being underweight in children differed between treatment arms. Conclusion: IPT with SP+AQ was associated with a small increase in the incidence of clinical malaria in the subsequent malaria transmission season.

Intermittent Preventive Treatment in Infants for the Prevention of Malaria in Rural Western Kenya: A Randomized, Double-Blind Placebo-Controlled Trial

PLoS ONE, 2010

Background: Intermittent preventive treatment in infants (IPTi) with sulphadoxine-pyrimethamine (SP) for the prevention of malaria has shown promising results in six trials. However, resistance to SP is rising and alternative drug combinations need to be evaluated to better understand the role of treatment versus prophylactic effects. , in an area of western Kenya with year round malaria transmission with high seasonal intensity and high usage of insecticide-treated nets, we conducted a randomized, double-blind placebo-controlled trial with SP plus 3 days of artesunate (SP-AS3), 3 days of amodiaquine-artesunate (AQ3-AS3), or 3 days of short-acting chlorproguanil-dapsone (CD3) administered at routine expanded programme of immunization visits (10 weeks, 14 weeks and 9 months).

Efficacy, Safety, and Tolerability of Three Regimens for Prevention of Malaria: A Randomized, Placebo-Controlled Trial in Ugandan Schoolchildren

PLoS ONE, 2010

Background: Intermittent preventive treatment (IPT) is a promising malaria control strategy; however, the optimal regimen remains unclear. We conducted a randomized, single-blinded, placebo-controlled trial to evaluate the efficacy, safety, and tolerability of a single course of sulfadoxine-pyrimethamine (SP), amodiaquine + SP (AQ+SP) or dihydroartemisininpiperaquine (DP) among schoolchildren to inform IPT.

Duration of Protection against Malaria and Anaemia Provided by Intermittent Preventive Treatment in Infants in Navrongo, Ghana

PLoS ONE, 2008

Background: Intermittent preventive treatment for malaria in Infants (IPTi) has been shown to give effective and safe protection against malaria. It has been suggested that IPTi might have long-lasting beneficial effects but, in most settings, the protection provided by IPTi appears to be short-lived. Knowledge of the duration of protection given by IPTi would help interpret the results of existing trials and suggest optimal delivery schedules for IPTi. This study investigated how the protective efficacy of IPTi against malaria and anaemia changes over time.

The implementation of malaria intermittent preventive trialtreatment with sulphadoxine-pyrimethamine in infants reduced all-cause mortality in the district of Kolokani, Mali: results from a cluster randomized control

Malaria Journal, 2012

Background: Malaria intermittent preventive treatment of malaria in infant with sulphadoxine-pyrimethamine (IPTi-SP) reduced the incidence of malaria and anaemia by 30% and 20% respectively. The strategy is now a recommended policy for malaria control. However, there was no published study on the impact of the strategy on mortality. The present study assessed the impact of the implementation of IPTi-SP in health services in Mali on allcause mortality. Methods: The 22 health sub-districts of the district of Kolokani were randomized at a 1:1 ratio to either receive IPTi-SP or to serve as a control. The IPTi-SP was implemented for two years starting December 2006. Information on births and deaths through 31 March, 2009 was collected on all children who reached four months of age on 1 December, 2006, likely to be exposed to the intervention in 75 localities randomly selected in each zone. Results: A total of 5,882 children (2,869 from the intervention zone and 3,013 from the nonintervention zone) who reached four months of age between 1 December, 2006 and 1 December, 2008 were surveyed between the age of four months to the age of 18 months from 1 December, 2006 to 31 March, 2009. In the cohort of four to 18 months of age, the mortality rate per 1,000 children was 2.53 in the intervention zone compared to 3.46 in the nonintervention zone, gender and season adjusted mortality rate ratio (MRR) = 0.73 (95% CI 0.55-0.97, p = 0.029). In the cohort of the four to 12 months of age, mortality rates per 1,000 children were 2.22 in the intervention zone and 3.13 in the non-intervention zone, MRR = 0.71 (95% CI 0.49-1.02, p = 0.064) adjusted for gender and season. Conclusion: The implementation of the IPTi-SP resulted in a substantial reduction in all-cause mortality in children. The results of this study support the adoption and the implementation of IPTi-SP as malaria control strategy.

Impact of intermittent preventive treatment with sulphadoxine-pyrimethamine targeting the transmission season on the incidence of clinical malaria in children in Mali

Malaria Journal, 2008

Background Recent studies have shown that intermittent preventive malaria treatment (IPT) in infants in areas of stable malaria transmission reduces malaria and severe anaemia incidence. However in most areas malaria morbidity and mortality remain high in older children. Methods To evaluate the effect of seasonal IPT with sulphadoxine pyrimethamine (SP) on incidence of malaria disease in area of seasonal transmission, 262 children 6 months-10 years in Kambila, Mali were randomized to receive either IPT with SP twice at eight weeks interval or no IPT during the transmission season of 2002 and were followed up for 12 months. Subjects were also followed during the subsequent transmission season in 2003 to assess possible rebound effect. Clinical malaria cases were treated with SP and followed to assess the in vivo response during both periods. Results The incidence rate of malaria disease per 1,000 person-months during the first 12 months was 3.2 episodes in the treatment group vs. 5.8 episodes in the control group with age-adjusted Protective Efficacy (PE) of 42.5%; [95% CI 28.6%–53.8%]. When the first 16 weeks of follow up is considered age-adjusted PE was 67.5% [95% CI 55.3% – 76.6%]. During the subsequent transmission season, the incidence of clinical malaria per 1000 persons-days was similar between the two groups (23.0 vs 21.5 episodes, age-adjusted IRR = 1.07 [95% CI, 0.90–1.27]). No significant difference was detected in in vivo response between the groups during both periods. Conclusion Two malaria intermittent treatments targeting the peak transmission season reduced the annual incidence rate of clinical malaria by 42.5% in an area with intense seasonal transmission. This simple strategy is likely to be one of the most effectives in reducing malaria burden in such areas. Trial Registration Clinicaltrials.gov NCT00623155