An existence principle for variational inequalities in Banach spaces (original) (raw)
Abstract
The present article deals with existence and uniqueness results for a variational inequality posed on a real smooth Banach space. This allows us to generalize the known results of this type given in Hilbert spaces.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (33)
- Alber, Y.: Generalized projection operators in Banach spaces: properties and applications. Funct. Diff. Equ. Proc. Israel Seminar Ariel 1, 1-24 (1994)
- Alber, Y., Reich, S., Shoikhet, D.: Iterative approximations of null points of uniformly accretive operators with estimates of convergence rate. Commun. Appl. Anal. 6, 89-104 (2002)
- Aoyama, K., Iiduca, H., Takahashi, W.: Weak convergence of an iterative sequence for accretive operators in Banach spaces. Fixed Point Theory Appl. 2006, 1-13 (2006)
- Barbu, V.: Nonlinear semigroups and differential equations in Banach spaces. Noordhoff International Publishing, Leiden (1976)
- Browder, F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Am. Math. Soc. 7(3), 875-882 (1967)
- Chugh, R., Rani, R.: Solution of a variational inequality problem for accretive operators in Banach spaces. IOSR J. Math. 12(4), 131-135 (2016)
- Cioranescu, I.: Geometry of Banach spaces, duality mappings and nonlinear problems. Kluwer Academic Publishers, Dordrecht (1990)
- Cojocaru, M.G.: Projected dynamical systems on Hilbert spaces. Ph.D. thesis, Queen's University Canada (2002)
- Cojocaru, M.G., Daniele, P., Nagurney, A.: Projected dynamical systems and evolutionarry (time- dependent) variational inequalities via Hilbert spaces with applications. J. Optim. Theory Appl. 27(3), 1-15 (2005)
- Deville, R.: Strong solutions of evolution equations governed by m-accretive operators and the Radon- Nikodým property Proc. Am. Math. Soc. 112(4), 1001-1008 (1991)
- Fetter, H., Japón, M., Villada-Bedoya, J.: Reflexivity is equivalent to stability of the almost fixed point property. J. Math. Anal. Appl. 459, 789-796 (2018)
- Garcia-Falset, J.: The asymptotic behavior of the solutions of the Cauchy problem generated by φ-accretive operators. J. Math. Anal. Appl. 310, 594-608 (2005)
- Garcia-Falset, J.: Strong convergence theorems for resolvents of accretive operators. Fixed point theory and its applications, pp. 87-94. Yokohama Publishers, Tokyo (2005)
- Garcia-Falset, J., Muñiz-Pérez, O.: Projected dynamical systems on Hilbert spaces. J. Nonlinear Convex Anal. 15, 325-344 (2014)
- Garcia-Falset, J., Reich, S.: Integral solutions to a class of nonlocal evolution equations. Commun. Con- temp. Math. 12(6), 1031-1054 (2010)
- Giuffrè, S., Idone, G., Pia, S.: Some classes of projected dynamical systems in Banach spaces and varia- tional inequalities. J. Global Optim. 40, 119-128 (2008)
- Goebel, K., Kirk, W.A.: Topics in metric fixed point theory, vol. 28. Cambridge University Press, Cam- bridge (1990)
- Isac, G., Cojocaru, M.G.: The projection operator in a Hilbert space and its directional derivative. Con- sequences for the theory of projected dynamical systems. J. Funct. Spaces Appl. 2, 71-95 (2002)
- Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938-945 (2002)
- Kato, T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19, 508-520 (1967)
- Kinderlehrer, D., Stampacchia, G.: An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88. Academic Press, New York (1980)
- Kirk, W.A., Sims, B. (eds.): Handbook of metric fixed point theory. Kluwer Academic Publishers, Dor- drecht (2001)
- Matousková, E., Reich, S.: Reflexivity and approximate fixed points. Stud. Math. 159, 403-415 (2003)
- Reich, S.: Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 26, 378-395 (1977)
- Reich, S.: Stong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287-292 (1980)
- Reich, S.: Review of [7].
- Bull. Am. Math. Soc. 26, 367-370 (1992)
- Reich, S.: A weak convergence theorem for the alternating method with Bergman distances. Theory and applications of nonlinear operators, pp. 313-318. Marcel Dekker, New York (1996)
- Saeidi, S., Kim, D.S.: Combination of the hybrid steepest-Descent method and viscosity approximation. J. Optim. Theory Appl. 160, 911-930 (2014)
- Takahashi, W.: Nonlinear Funct. Anal. Yokohama Publishers, Tokyo (2000)
- Torrejón, R., Reich, S.: Zeros of accretive operators. Comment. Math. Univ. Carolinae 21, 619-625 (1980)
- Wong, N.C., Sahu, D.R., Yao, J.C.: Solving variational inequalities involving nonexpansive type mappings. Nonlinear Anal. 69, 4732-4753 (2008)
- Yao, Y., Noor, M.A., Noor, KhI, Liou, Y-Ch.: On an Iterative algorithm for variational inqualities in Banach spaces. Math. Commun. 16, 95-104 (2011)