Targeted Muscle Reinnervation in the Initial Management of Traumatic Upper Extremity Amputation Injury (original) (raw)

Targeted Muscle Reinnervation: A Novel Approach to Postamputation Neuroma Pain

Clinical Orthopaedics & Related Research, 2014

Background Postamputation neuroma pain can prevent comfortable prosthesis wear in patients with limb amputations, and currently available treatments are not consistently effective. Targeted muscle reinnervation (TMR) is a decade-old technique that employs a series of novel nerve transfers to permit intuitive control of upper-limb prostheses. Clinical experience suggests that it may also serve as an effective therapy for postamputation neuroma pain; however, this has not been explicitly studied. Questions/purposes We evaluated the effect of TMR on residual limb neuroma pain in upper-extremity amputees. Methods We conducted a retrospective medical record review of all 28 patients treated with TMR from 2002 to 2012 at Northwestern Memorial Hospital/Rehabilitation Institute of Chicago (Chicago, IL, USA) and San Antonio Military Medical Center (San Antonio, TX, USA). Twentysix of 28 patients had sufficient ([ 6 months) followup for study inclusion. The amputation levels were shoulder disarticulation (10 patients) and transhumeral (16 patients). All patients underwent TMR for the primary purpose of improved myoelectric control. Of the 26 patients included in the study, 15 patients had evidence of postamputation neuroma pain before undergoing TMR. Results Of the 15 patients presenting with neuroma pain before TMR, 14 experienced complete resolution of pain in the transferred nerves, and the remaining patient's pain improved (though did not resolve). None of the patients who presented without evidence of postamputation neuroma pain developed neuroma pain after the TMR procedure. All 26 patients were fitted with a prosthesis, and 23 of the 26 patients were able to operate a TMR-controlled prosthesis. Conclusions None of the 26 patients who underwent TMR demonstrated evidence of new neuroma pain after the procedure, and all but one of the 15 patients who presented with preoperative neuroma pain experienced complete relief of pain in the distribution of the transferred nerves. TMR offers a novel and potentially more effective therapy for the management of neuroma pain after limb amputation. Each author certifies that he or she, or a member of his or her immediate family, has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article. All ICMJE Conflict of Interest Forms for authors and Clinical Orthopaedics and Related Research 1 editors and board members are on file with the publication and can be viewed on request. Each author certifies that his or her institution approved the human protocol for this investigation, that all investigations were conducted in conformity with ethical principles of research, and that informed consent for participation in the study was obtained.

Targeted Muscle Reinnervation in the Upper Extremity Amputee: A Technical Roadmap

The Journal of hand surgery, 2015

Targeted muscle reinnervation (TMR) offers the potential for improved prosthetic function by reclaiming the neural control information that is lost as a result of upper extremity amputation. In addition to the prosthetic control benefits, TMR is a potential treatment for postamputation neuroma pain. Here, we present our surgical technique for TMR nerve transfers in transhumeral and shoulder disarticulation patients.

Advances in upper limb loss rehabilitation: the role of targeted muscle reinnervation and regenerative peripheral nerve interfaces

Plastic and Aesthetic Research, 2022

Upper limb loss results in significant physical and psychological impairment and is a major financial burden for both patients and healthcare services. Current myoelectric prostheses rely on electromyographic (EMG) signals captured using surface electrodes placed directly over antagonistic muscles in the residual stump to drive a single degree of freedom in the prosthetic limb (e.g., hand open and close). In the absence of the appropriate muscle groups, patients rely on activation of biceps/triceps muscles alone (together with a mode switch) to control all degrees of freedom of the prosthesis. This is a non-physiological method of control since it is non-intuitive and contributes poorly to daily function. This leads to the high rate of prosthetic abandonment. Targeted muscle reinnervation (TMR) reroutes the ends of nerves in the amputation stump to nerves innervating “spare” muscles in the amputation stump or chest wall. These then become proxies for the missing muscles in the amputated limb. TMR has revolutionised prosthetic control, especially for high-level amputees (e.g., after shoulder disarticulation), resulting in more intuitive, fluid control of the prosthesis. TMR can also reduce the intensity of symptoms such as neuroma and phantom limb pain. Regenerative peripheral nerve interface (RPNI) is another technique for increasing the number of control signals without the limitations of finding suitable target muscles imposed by TMR. This involves wrapping a block of muscle around the free nerve ending, providing the regenerating axons with a target organ for reinnervation. These RPNIs act as signal amplifiers of the previously severed nerves and their EMG Upper limb loss results in significant physical and psychological impairment and is a major financial burden for both patients and healthcare services. Current myoelectric prostheses rely on electromyographic (EMG) signals captured using surface electrodes placed directly over antagonistic muscles in the residual stump to drive a single degree of freedom in the prosthetic limb (e.g., hand open and close). In the absence of the appropriate muscle groups, patients rely on activation of biceps/triceps muscles alone (together with a mode switch) to control all degrees of freedom of the prosthesis. This is a non-physiological method of control since it is non-intuitive and contributes poorly to daily function. This leads to the high rate of prosthetic abandonment. Targeted muscle reinnervation (TMR) reroutes the ends of nerves in the amputation stump to nerves innervating “spare” muscles in the amputation stump or chest wall. These then become proxies for the missing muscles in the amputated limb. TMR has revolutionised prosthetic control, especially for high-level amputees (e.g., after shoulder disarticulation), resulting in more intuitive, fluid control of the prosthesis. TMR can also reduce the intensity of symptoms such as neuroma and phantom limb pain. Regenerative peripheral nerve interface (RPNI) is another technique for increasing the number of control signals without the limitations of finding suitable target muscles imposed by TMR. This involves wrapping a block of muscle around the free nerve ending, providing the regenerating axons with a target organ for reinnervation. These RPNIs act as signal amplifiers of the previously severed nerves and their EMG Upper limb loss results in significant physical and psychological impairment and is a major financial burden for both patients and healthcare services. Current myoelectric prostheses rely on electromyographic (EMG) signals captured using surface electrodes placed directly over antagonistic muscles in the residual stump to drive a single degree of freedom in the prosthetic limb (e.g., hand open and close). In the absence of the appropriate muscle groups, patients rely on activation of biceps/triceps muscles alone (together with a mode switch) to control all degrees of freedom of the prosthesis. This is a non-physiological method of control since it is non-intuitive and contributes poorly to daily function. This leads to the high rate of prosthetic abandonment. Targeted muscle reinnervation (TMR) reroutes the ends of nerves in the amputation stump to nerves innervating “spare” muscles in the amputation stump or chest wall. These then become proxies for the missing muscles in the amputated limb. TMR has revolutionised prosthetic control, especially for high-level amputees (e.g., after shoulder disarticulation), resulting in more intuitive, fluid control of the prosthesis. TMR can also reduce the intensity of symptoms such as neuroma and phantom limb pain. Regenerative peripheral nerve interface (RPNI) is another technique for increasing the number of control signals without the limitations of finding suitable target muscles imposed by TMR. This involves wrapping a block of muscle around the free nerve ending, providing the regenerating axons with a target organ for reinnervation. These RPNIs act as signal amplifiers of the previously severed nerves and their EMG signals can be used to control prosthetic limbs. RPNI can also reduce neuroma and phantom limb pain. In this review article, we discuss the surgical technique of TMR and RPNI and present outcomes from our experience with TMR.

Targeted Muscle Reinnervation Treats Neuroma and Phantom Pain in Major Limb Amputees

Annals of Surgery, 2018

Objective: To compare targeted muscle reinnervation (TMR) to ''standard treatment'' of neuroma excision and burying into muscle for postamputation pain. Summary Background Data: To date, no intervention is consistently effective for neuroma-related residual limb or phantom limb pain (PLP). TMR is a nerve transfer procedure developed for prosthesis control, incidentally found to improve postamputation pain. Methods: A prospective, randomized clinical trial was conducted. 28 amputees with chronic pain were assigned to standard treatment or TMR. Primary outcome was change between pre-and postoperative numerical rating scale (NRS, 0-10) pain scores for residual limb pain and PLP at 1 year. Secondary outcomes included NRS for all patients at final follow-up, PROMIS pain scales, neuroma size, and patient function. Results: In intention-to-treat analysis, changes in PLP scores at 1 year were 3.2 versus À0.2 (difference 3.4, adjusted confidence interval (aCI) À0.1 to 6.9, adjusted P ¼ 0.06) for TMR and standard treatment, respectively. Changes in residual limb pain scores were 2.9 versus 0.9 (difference 1.9, aCI À0.5 to 4.4, P ¼ 0.15). In longitudinal mixed model analysis, difference

Efficacy of targeted muscle reinnervation for treating and preventing postamputation pain - a systematic review

Plastic and Aesthetic Research

Aim: Targeted muscle reinnervation (TMR) is a procedure pioneered to improve control of myoelectric prostheses and was fortuitously found to improve postamputation pain by transferring residual nerve ends from an amputated limb to reinnervate motor nerve units in denervated muscles. This study sought to perform a systematic review of the literature regarding the postamputation pain-related outcomes following TMR. Methods: PubMed database was queried using the key term “targeted muscle reinnervation”. Articles were chosen based on the following criteria: (1) clinical studies on TMR; (2) greater than one subject; (3) studies were case-controls, comparative cohort analyses, controlled trials, or randomized controlled trials; and (4) studies included one or more outcomes of interest: prosthetic use and functionality, improvement or persistence of pain, indications, complications, donor nerves, and technical aspects of TMR. Results: Overall, 9 studies including 101 upper extremity and 25...

The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee

Prosthetics & Orthotics International, 2004

A novel method for the control of a myoelectric upper limb prosthesis was achieved in a patient with bilateral amputations at the shoulder disarticulation level. Four independently controlled nerve-muscle units were created by surgically anastomosing residual brachial plexus nerves to dissected and divided aspects of the pectoralis major and minor muscles. The musculocutaneous nerve was anastomosed to the upper pectoralis major; the median nerve was transferred to the middle pectoralis major region; the radial nerve was anastomosed to the lower pectoralis major region; and the ulnar nerve was transferred to the pectoralis minor muscle which was moved out to the lateral chest wall. After five months, three nerve-muscle units were successful (the musculocutaneous, median and radial nerves) in that a contraction could be seen, felt and a surface electromyogram (EMG) could be recorded. Sensory reinnervation also occurred on the chest in an area where the subcutaneous fat was removed. Th...

Targeted Muscle Reinnervation as a Solution for Nerve Pain

Plastic & Reconstructive Surgery, 2020

Learning Objectives: After reading this article, the participants should be able to: 1. List current nonsurgical and surgical strategies for addressing postamputation neuroma pain and discuss their limitations. 2. Summarize the indications and rationale for targeted muscle reinnervation. 3. Develop an operative plan for targeted muscle reinnervation in an acute or delayed fashion for upper and lower extremity amputations. 4. Propose a management algorithm for treatment of symptomatic neuromas in an intact limb. 5. Discuss the risk of neuroma development after primary revision digital amputation or secondary surgery for a digital neuroma. 6. Compare and contrast targeted muscle reinnervation to the historical gold standard neuroma treatment of excision and burying the involved nerve in muscle, bone, or vein graft. 7. Interpret and discuss the evidence that targeted muscle reinnervation improves postamputation neuroma and phantom pain when performed either acutely or in a delayed fash...

Preemptive Treatment of Phantom and Residual Limb Pain with Targeted Muscle Reinnervation at the Time of Major Limb Amputation

Journal of the American College of Surgeons

BACKGROUND: A majority of the nearly 2 million Americans living with limb loss suffer from chronic pain in the form of neuroma-related residual limb and phantom limb pain (PLP). Targeted muscle reinnervation (TMR) surgically transfers amputated nerves to nearby motor nerves for prevention of neuroma. The objective of this study was to determine whether TMR at the time of major limb amputation decreases the incidence and severity of PLP and residual limb pain. STUDY DESIGN: A multi-institutional cohort study was conducted between 2012 and 2018. Fifty-one patients undergoing major limb amputation with immediate TMR were compared with 438 unselected major limb amputees. Primary outcomes included an 11-point Numerical Rating Scale (NRS) and Patient-Reported Outcomes Measurement Information System (PROMIS) pain intensity, behavior, and interference. RESULTS: Patients who underwent TMR had less PLP and residual limb pain compared with untreated amputee controls, across all subgroups and by all measures. Median "worst pain in the past 24 hours" for the TMR cohort was 1 out of 10 compared to 5 (PLP) and 4 (residual) out of 10 in the control population (p ¼ 0.003 and p < 0.001, respectively). Median PROMIS t-scores were lower in TMR patients for both PLP (pain intensity [36.3 vs 48.3], pain behavior [50.1 vs 56.6], and pain interference [40.7 vs 55.8]) and residual limb pain (pain intensity [30.7 vs 46.8], pain behavior [36.7 vs 57.3], and pain interference [40.7 vs 57.3]). Targeted muscle reinnervation was associated with 3.03 (PLP) and 3.92 (residual) times higher odds of decreasing pain severity compared with general amputee participants. CONCLUSIONS: Preemptive surgical intervention of amputated nerves with TMR at the time of limb loss should be strongly considered to reduce pathologic phantom limb pain and symptomatic neuroma-related residual limb pain.