Optical damage limits in chalcogenide nonlinear crystals used in 1064nm pumped nanosecond optical parametric oscillators (original) (raw)
SPIE Proceedings, 2013
Abstract
ABSTRACT We investigated optical damage (surface and bulk) in wide band-gap (absorption edge below 532 nm) sulphide and selenide nonlinear crystals that can be used in 1064-nm pumped optical parametric oscillators (OPOs) for generation of idler pulses above 4 μm without two-photon absorption losses at the pump wavelength. The optical damage has been characterized at the pump wavelength for different repetition rates. Surface damage has been studied for uncoated and antireflection-coated (mainly with a single layer for pump and signal wavelengths) samples. Optical damage inside the OPO has a lower threshold and represents at present the principal limitation for the achievable output. It is related to peak and not to average intensities and in many of the studied crystals bulk damage in the form of scattering centers occurs before surface damage. Such bulk damage formation is faster at higher repetition rate. Lower repetition rates increase the lifetime of the crystal but do not solve the problem. In the most successful nonlinear crystal (both in terms of output energy and average power), orange-phase HgGa2S4, the safe pump intensity in extracavity measurements is below 100 MW/cm2 which corresponds to less than 1 J/cm2 for the 8 ns pulse duration (both values peak on-axis). In the OPO, however, peak on-axis fluence should not exceed 0.3 J/cm2 limited by the formation of bulk scattering centers. The damage resistivity of yellow-phase HgGa2S4 or Cd-doped HgGa2S4 is higher and of the almost colorless CdGa2S4 it is roughly two times higher but the latter has no sufficient birefringence for phase-matching.
Valentin Petrov hasn't uploaded this paper.
Let Valentin know you want this paper to be uploaded.
Ask for this paper to be uploaded.