Molecular Docking studies and in-silico ADMET Screening of Some novel Oxazine substituted 9-Anilinoacridines as Topoisomerase II Inhibitors (original) (raw)
Related papers
Molecules
A series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives 17a–17j, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level. The selected 3,9-disubstituted acridine derivatives were studied in the presence of DNA using spectroscopic (UV-Vis, circular dichroism, and thermal denaturation) and electrophoretic (nuclease activity, relaxation and unwinding assays for topoisomerase I and decatenation assay for topoisomerase IIα) methods. Binding constants (2.81–9.03 × 104 M−1) were calculated for the derivatives from the results of the absorption titration spectra. The derivatives were found to have caused the inhibition of both to...
European Journal of Medicinal Chemistry, 2012
A series of 9-anilinoacridines substituted with oxazine derivatives were synthesized to evaluate their antioxidant and anticancer activity against Daltons Lymphoma Ascites (DLA) cell growth by in vitro method. It was revealed that these conjugates exhibited significant antioxidant and anticancer activity (inhibition of DLA cell proliferation). Among these agents, compounds 5a, 5h, 5i, 5j were the most cytotoxic with CTC 50 value of 140e250 mg/mL. The docking studies of the synthesized compounds were performed towards the key Topoisomerase II (1QZR) by using Schrodinger Maestro 9.2 version. The oxazine substituted 9-anilinoacridine derivatives 5a, 5h, 5i, 5j have significant anticancer activity as topoisomerase II inhibitors.
A series of novel 9-anilinoacridines was designed and their molecular docking studies into the active site were examined as topoisomerase I inhibitor. Several compounds showed significant high simulation docking score. The designed compounds were synthesized and biologically evaluated against mammary carcinoma cell line (MCF-7), where compounds 8,11e,11f,13b,14b,14e and 14f showed significant inhibitory activity at a concentration 10g/mL). It appears that the in vitro activity of compounds 8,11e,11f,13b,14b,14e and 14f were consistent with their molecular modeling results, and compound 14b showed the highest activity with IC 50 value of 7.8 µg. [Journal of American Science. 2010;6(11):148-158]. (ISSN: 1545-1003).
European Journal of Pharmacology, 2009
We have identified a small library of novel substituted 9-aminoacridine derivatives that inhibit cell proliferation of pancreatic cancer cell lines by inducing apoptosis. (Goodell, J.R. et al., 2008. J. Med. Chem. 51, 179-182.). To further investigate their antiproliferative activities, we have assessed the antiproliferative activity of these acridine-based compounds against several pancreatic cancer cell lines. All four compounds used in this study inhibited the proliferation of pancreatic cancer cell lines in vitro. In addition, we have employed a xenograft tumor model and found that these compounds also inhibit the proliferation of pancreatic cancer in vivo. In light of the potential importance of the anticancer activity of these acridine-based compounds, we have conducted a series of biochemical assays to determine the effect of these compounds on human topoisomerase II. Unlike amsacrine, these compounds do not poison topoisomerase II. Similar to amsacrine, however, these compounds intercalate into DNA in a way that they would alter the apparent topology of the DNA substrate. Thus, inhibition of the relaxation activity of topoisomerase II by these compounds has been reexamined using a DNA strand passage assay. We have found that these compounds, indeed, inhibit the catalytic activity of topoisomerase II. Thus, these novel acridine-based compounds with antipancreatic cancer activity are catalytic inhibitors, not poisons, of human topoisomerase II.
Bioorganic Chemistry, 2019
A series of 9-(2-(1-arylethylidene)hydrazinyl)acridine and its analogs were designed, synthesized and evaluated for biological activities. Various biochemical assays were performed to determine the free radical scavenging capacity of synthesized compounds (4a-4j). Anticancer activity of these compounds was assessed against two different human cancer cell lines viz cervical cancer cells (HeLa) and liver cancer cells (HepG2) as well as normal human embryonic kidney cell line (HEK 293). Compounds 4b, 4d and 4e showed potential anti-proliferative effects on HeLa cells. Based on results obtained from antioxidant and cytotoxicity studies, 4b, 4d and 4e were further studied in detail for different biological activities. 4b, 4d and 4e reduced the cell growth, inhibited metastatic activity and declined the potential of cell migration in HeLa cell lines. Topoisomerase1 (Top1) treated with compounds 4b, 4d and 4e exhibited inhibition of Top1 and prevented DNA replication. Molecular docking results validate that interaction of compounds 4b, 4d and 4e with Top1-DNA complex, which might be accountable for their inhibitory effects. Further it was concluded that compounds 4b, 4d and 4e arrests the cells at S phase and consequently induces cell death through DNA damage in HeLa cells.
Bioorganic & Medicinal Chemistry, 2009
Some novel 9-anilinothiazolo[5,4-b]quinoline derivatives were synthesized and their cytotoxic activities were examined. The inhibition of some of the most active compounds over human topoisomerase II (Topo II) activity was assessed with the kDNA decatenation assay. The novel compounds differ in the substituents attached to the anilino ring, a dialkylamino alkylamino group, a saturated heterocyclic moiety, a methylthio group at position 2 and a fluorine atom present or absent at 7-position. According to the data, compounds with a diethylaminopropylamino group and a chlorine atom at 4 0-position of the anilino ring were the most cytotoxic. The molecular models of all compounds indicated a correlation between hydrophobicity and cytotoxic activity although the direction and magnitude of the dipole moment also had a significant influence on its cytotoxicity. The 2-dialkylaminoalkylamino substituent is flexible and is known to facilitate the crossing of cell membranes; thus, this last barrier may be a limiting step in the mechanisms mediating the cytotoxicity. On the other hand, the activity of 2-methylthio derivatives seems to rely more on the electronic effects brought about by the substitution of the aniline ring. The synthesis, cytotoxicity against cancer cell lines, in vitro inhibition of human topoisomerase II, molecular modeling and the preliminary analysis of structure-activity relationships are presented.
Bioorganic & Medicinal Chemistry, 2011
a b s t r a c t 4-Amino-2-phenylquinazolines 7 were designed as bioisosteres of 3-arylisoquinolinamines 6 that were energy minimized to provide stable conformers. Interestingly, the 2-phenyl ring of 4-amino-2-phenylquinazolines was parallel to the quinazoline ring and improved their DNA intercalation ability in the DNA-topo I complex. Among the synthesized 4-amino group-substituted analogs, 4-cyclohexylamino-2-phenylquinazoline 7h exhibited potent topo I inhibitory activity and strong cytotoxicity. Interestingly, consistency was observed between the cytotoxicities and topo I activities in these quinazoline analogs, suggesting that the target of 4-amino-2-phenylquinazolines is limited to topo I. Molecular docking studies were performed with the Surflex-Dock program to afford the ideal interaction mode of the compound into the binding site of the DNA-topo I complex in order to clarify the topo I activity of 7h.
European journal of medicinal chemistry, 2016
Topoisomerase II poison blocks the transitorily generated DNA double-strand breaks (DSBs) from religation, thereby causes severe DNA damage and gene toxicity. While topoisomerase II catalytic inhibitor does not form cleavable DNA-enzyme complex because its function attributes to inhibition of the catalytic steps of the enzyme such as before generating DNA DSBs or in the last step of the catalytic cycle after religation. It has been reported that the stabilizing effect of etoposide on transient cleavable DNA-topoisomerase IIβ complex attributes to its secondary malignancy. Therefore, topoisomerase IIα has been considered as more attractive target than topoisomerase IIβ for the development of chemotherapeutic agents. In the previous work, we reported compounds I and II as novel topoisomerase IIα catalytic inhibitors targeting for ATP binding site of human topoisomerase IIα ATP-binding domain. As a continuous work, we have designed and synthesized 43 compounds of C1-O-alkyl and arylalk...
Cancer Research, 2005
By screening 1,990 compounds from the National Cancer Institute diversity set library against human topoisomerase IIA, we identified a novel catalytic topoisomerase II inhibitor NSC35866, a S 6 -substituted analogue of thioguanine. In addition to inhibiting the DNA strand passage reaction of human topoisomerase IIA, NSC35866 also inhibited its ATPase reaction. NSC35866 primarily inhibited DNA-stimulated ATPase activity, whereas DNA-independent ATPase activity was less sensitive to inhibition. We compared the mode of topoisomerase II ATPase inhibition induced by NSC35866 with that of 12 other substituted purine analogues of different chemical classes. The ability of thiopurines with free SH functionalities to inhibit topoisomerase II ATPase activity was completely abolished by DTT, suggesting that these thiopurines inhibit topoisomerase II ATPase activity by covalently modifying free cysteine residues. In contrast, NSC35866 as well as two O 6 -substituted guanine analogues, O 6 -benzylguanine and NU2058, could inhibit topoisomerase II ATPase activity in the presence of DTT, indicating that they have a different mechanism of inhibition. NSC35866 did not increase the level of topoisomerase II covalent cleavable complexes with DNA, indicating that it is a catalytic inhibitor and not a poison. NSC35866 was also capable of inducing a salt-stable complex of topoisomerase II on closed circular DNA. In accordance with these biochemical data, NSC35866 could antagonize etoposide-induced cytotoxicity and DNA breaks in human and murine cancer cells, confirming that NSC35866 also functions as a catalytic topoisomerase II inhibitor in cells. (Cancer Res 2005; 65(16): 7470-7)