Chemical synthesis and low temperature electrical transport in polypyrrole doped with sodium bis(2-ethylhexyl) sulfosuccinate (original) (raw)
Polypyrrole (PPy) is polymerized by chemical oxidative polymerization in presence of anionic surfactant sodium bis (2-ethylhexyl) sulfosuccinate (DEHS) as the dopant. The electrical conductivity was optimized in terms of oxidant to monomer molar ratio and polymerization yield was measured for these reactions. We have used ammonium persulphate (APS) as the oxidant for polymerization in this series of experiments. The effect of concentration of oxidant on the electrical conductivity is examined. Chemical synthesis of polypyrrole is supported by FTIR spectrum. The electrical conductivity of doped and undoped polypyrrole has been measured in the temperature range of 10-300 K and is found to increase with rise in temperature. Electrical conductivity of PPy was analyzed in the light of various charge transport models. Analysis of the electrical conductivity data reveals that in the temperature range 60-300 K electrical transport is predominantly governed by power law behaviour given by Kivelson model. However in the low temperature range 10-60 K electrical transport is dominated by the fluctuation assisted mechanism.