An Update on Applications of Cattle Mesenchymal Stromal Cells (original) (raw)
Related papers
Equine Veterinary Journal, 2012
Reasons for performing study: The therapeutic potential of mesenchymal stromal cells for cellular therapy has generated increasing interest in human as well as veterinary medicine. Considerable research has been performed on the cryopreservation of expanded mesenchymal stromal cells, but little information is available on the cryopreservation of the original mononuclear cell fraction. Objectives: The present study describes a protocol to expand equine mesenchymal stromal cells after cryopreserving the mononuclear cells of umbilical cord blood. Methods: To this end, mononuclear cells were isolated from 7 umbilical cord blood samples and cryopreserved at a concentration of 1-2 ¥ 10 9 cells/l cold freezing solution. Cells were cryopreserved and kept frozen for at least 6 months before thawing. Frozen cryotubes were thawed in a 37°C water bath. Putative equine mesenchymal stromal cells were immunophenotyped using multicolour flow cytometry based on a selected 9 marker panel. Results: Average cell viability upon thawing was 98.7 Ϯ 0.6%. In 6 out of 7 samples, adherent spindle-shaped cell colonies were observed within 9.0 Ϯ 2.6 days and attained 80% confluency at 12.3 Ϯ 3.9 days. After 3 passages, putative equine mesenchymal stromal cells were successfully immunophenotyped as CD29, CD44 and CD90 positive, and CD45, CD73, CD79a, CD105, MHC II and monocyte-marker negative. Conclusions and potential relevance: Equine mesenchymal stromal cells can be cultured after cryopreservation of the isolated mononuclear cells, a timeas well as cost-efficient approach in equine regenerative medicine.
Isolation and differentiation of mesenchymal stem cells from bovine umbilical cord blood
Reproduction in domestic animals = Zuchthygiene, 2011
Currently, mesenchymal stem cells (MSCs) are used in veterinary clinical applications. Bone marrow and adipose tissue are the most common sources of stem cells derived from adult animals. However, cord blood which is collected non-invasively is an alternative source of stem cells other than bone marrow and adipose tissue. Moreover, high availability and lower immunogenicity of umbilical cord blood (UCB) haematopoietic stem cells compared to other sources of stem cell therapy such as bone marrow have made them a considerable source for cell therapy, but MSCs is not highly available in cord blood and their immunogenicity is poorly understood. In this study, the cells with spindle morphology from 7 of 9 bovine UCB samples were isolated and cultured. These mesenchymal stromal cells were successfully differentiated to osteocytes, chondrocytes and adipocytes. In addition, Oct-4 and SH3 were determined by RT-PCR assay. It is the first report of isolation, culture, characterization and diff...
Frontiers in veterinary science, 2016
Equine mesenchymal stromal cells (MSC) are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB) MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In nine ponies (study 1), a bolus of HypoThermosol(®) FRS (HTS-FRS), CryoStor(®) CS10 (CS10), or saline was injected IV (n = 3/treatment). Study 2, following a 1-week washout period, 5 × 10(7) pooled allogeneic CB-MSCs were administered IV in HTS-FRS following 24 h simulated chilled transport. Study 3, following another 1-week washout period 5 × 10(7) pooled allogeneic CB-MSCs were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study...
Mesenchymal stem cells from amnion and amniotic fluid in the bovine
Reproduction, 2013
Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P!0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1 (CD29), CD44, ALCAM (CD166), ENG (CD105), and NT5E (CD73)) from P1 to P3; in AF-MSCs, only ITGB1, CD44, and ALCAM mRNAs are detected; NT5E is expressed from P2 and ENG has not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1 (OCT4) and MYC (c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.
Mesenchymal stem cells from amnion and amniotic fluid in bovine
Reproduction (Cambridge, England), 2013
Amnion and amniotic fluid (AF) are noncontroversial and inexhaustible sources of mesenchymal stem cells (MSCs) that can be harvested noninvasively at low cost. As in humans, also in veterinary field, presumptive stem cells derived from these tissues reveal as promising candidates for disease treatment, specifically for their plasticity, their reduced immunogenicity, and high anti-inflammatory potential. The aim of this work is to obtain and characterize, for the first time in bovine species, presumptive MSCs from the epithelial portion of the amnion (AECs) and from the AF (AF-MSCs) to be used for clinical applications. AECs display a polygonal morphology, whereas AF-MSCs exhibit a fibroblastic-like morphology only starting from the second passage, being heterogeneous during the primary culture. For both lines, the proliferative ability has been found constant over the ten passages studied and AECs show a statistically lower (P!0.05) doubling time with respect to AF-MSCs. AECs express MSC-specific markers (ITGB1 (CD29), CD44, ALCAM (CD166), ENG (CD105), and NT5E (CD73)) from P1 to P3; in AF-MSCs, only ITGB1, CD44, and ALCAM mRNAs are detected; NT5E is expressed from P2 and ENG has not been found at any passage. AF-MSCs and AECs are positive for the pluripotent markers (POU5F1 (OCT4) and MYC (c-Myc)) and lack of the hematopoietic markers. When appropriately induced, both cell lines are capable of differentiating into ectodermal and mesodermal lineages. This study contributes to reinforce the emerging importance of these cells as ideal tools in veterinary medicine. A deeper evaluation of the immunological properties needs to be performed in order to better understand their role in cellular therapy.
Journal of Tissue Engineering and Regenerative Medicine, 2016
The use of multipotent mesenchymal stromal cells (MSCs) as candidate medicines for treating a variety of pathologies is based on their qualities as either progenitors for the regeneration of damaged tissue or producers of a number of molecules with pharmacological properties. Preclinical product development programmes include the use of well characterized cell populations for proof of efficacy and safety studies before testing in humans. In the field of orthopaedics, an increasing number of translational studies use sheep as an in vivo test system because of the similarities with humans in size and musculoskeletal architecture. However, robust and reproducible methods for the isolation, expansion, manipulation and characterization of ovine MSCs have not yet been standardised. The present study describes a method for isolation and expansion of fibroblastic-like, adherent ovine MSCs that express CD44, CD90, CD140a, CD105 and CD166, and display trilineage differentiation potential. The 3-week bioprocess proposed here typically yielded cell densities of 1.4 × 10 4 MSCs/cm 2 at passage 2, with an expansion factor of 37.8 and approximately eight cumulative population doublings. The osteogenic potential of MSCs derived following this methodology was further evaluated in vivo in a translational model of osteonecrosis of the femoral head, in which the persistence of grafted cells in the host tissue and their lineage commitment into osteoblasts and osteocytes was demonstrated by tracking enhanced green fluorescent protein-labelled cells.
Characterisation and developmental potential of ovine bone marrow derived mesenchymal stem cells
Journal of Cellular Physiology, 2009
Since discovery, significant interest has been generated in the potential application of mesenchymal stem cells or multipotential stromal cells (MSC) for tissue regeneration and repair, due to their proliferative and multipotential capabilities. Although the sheep is often used as a large animal model for translating potential therapies for musculoskeletal injury and repair, the characteristics of MSC from ovine bone marrow have been inadequately described. Histological and gene expression studies have previously shown that ovine MSC share similar properties with human and rodents MSC, including their capacity for clonogenic growth and multiple stromal lineage differentiation. In the present study, ovine bone marrow derived MSCs positively express cell surface markers associated with MSC such as CD29, CD44 and CD166, and lacked expression of CD14, CD31 and CD45. Under serum-deprived conditions, proliferation of MSC occurred in response to EGF, PDGF, FGF-2, IGF-1 and most significantly TGF-a. While subcutaneous transplantation of ovine MSC in association with a ceramic HA/TCP carrier into immunocomprimised mice resulted in ectopic osteogenesis, adipogenesis and haematopoietic-support activity, transplantation of these cells within a gelatin sponge displayed partial chondrogenesis. The comprehensive characterisation of ovine MSC described herein provides important information for future translational studies involving ovine MSC.
Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood
2012
Background Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood.
Veterinary World, 2020
Background and Aim: Veterinary health care is an emergent area in animal sciences and innovative therapeutic approaches happen to be imperative in the present days. In view of the importance of cattle health and production, it is necessary to take up contemporary approach of stem cell therapy in this sector also. This study aimed to standardize an explant culture method of bovine umbilical tissue offcut to isolate mesenchymal stem cells (MSCs) because considerable efforts are required for ensuring easy accessibility and availability of MSCs in bulk quantity, as well as in establishing and characterizing the cell lines. Materials and Methods: The umbilical cord (UC) tissue matrix offcut was collected after calving. A simplified in vitro cell isolation technique was followed to collect the emerged out cells from the explants of UC. Further, we expanded these isolated cells in vitro, observed its growth kinetics, and characterized to confirm as per the criterion of bovine MSCs. Results: A considerable exponential growth rate of the UC-derived cells was noticed. In addition to their confirmation as MSCs, the cells also exhibited plastic adherent property and maintained the spindle-shaped morphology throughout the in vitro culture. The cultured cells were found positive MSC-specific surface markers CD105, CD90, and CD73 and were negative for hematopoietic cell marker CD45. Cytochemical studies revealed the ability of the cells to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Conclusion: This simplified method of isolation and culture of bovine multipotent MSCs from the UC offcut collected after calving could be extrapolated for the greater availability of the cells for prospective therapeutic applications.
Tissue Engineering Part C: Methods, 2011
Mesenchymal stromal cells (MSC) represent a promising population for supporting new clinical concepts in cellular therapy. A wide diversity of isolation procedures for MSC from umbilical cord blood (UCB) has been described for humans. In contrast, a few data are available in horses. In the current study, a sedimentation method using hydroxyethyl starch and a method based on the lysis of red blood cells using ammonium chloride (NH 4 Cl) were compared with two density gradient separation methods (Ficoll-Paque and Percoll). Adherent cell colonies could be established using all four isolation methods. The mononuclear cell recovery after Percoll separation, however, resulted in significantly more putative MSC colonies; and, therefore, this isolation method was used for all further experiments. Culture conditions such as cell density and medium or serum coating of the wells did not significantly affect putative MSC recovery. Isolated MSC using Percoll were subsequently differentiated toward the osteogenic, chondrogenic, and adipogenic lineage. In addition, MSC were phenotyped by multicolor flow cytometry based on their expression of different cell protein markers. Cultured MSC were CD29, CD44, and CD90-positive and CD79a, Macrophage/Monocyte and MHC II-negative. In conclusion, this study reports optimized protocols to isolate, culture, and characterize solid equine MSC from UCB.