FLASH: Fast and Robust Framework for Privacy-preserving Machine Learning (original) (raw)

Trident: Efficient 4PC Framework for Privacy Preserving Machine Learning

Proceedings 2020 Network and Distributed System Security Symposium, 2020

Machine learning has started to be deployed in fields such as healthcare and finance, which involves dealing with a lot of sensitive data. This propelled the need for and growth of privacy-preserving machine learning (PPML). We propose an actively secure four-party protocol (4PC), and a framework for PPML, showcasing its applications on four of the most widely-known machine learning algorithms-Linear Regression, Logistic Regression, Neural Networks, and Convolutional Neural Networks.

Efficient Secure Building Blocks With Application to Privacy Preserving Machine Learning Algorithms

IEEE Access, 2021

Nowadays different entities (such as hospitals, cyber security companies, banks, etc.) collect data of the same nature but often with different statistical properties. It has been shown that if these entities combine their privately collected datasets to train a machine learning model, they would end up with a trained model that often outperforms the human experts of the corresponding field(s) in terms of classification accuracy. However, due to judicial, privacy and cost reasons, no entity is willing to share their data with others. We have the same problem during the classification (inference) stage. Namely, the user doesn't want to reveal any information about his query or its' final classification, while the owner of the trained model wants to keep this model private. In this article we overcome these drawbacks by firstly introducing novel efficient secure building blocks for general purpose, which can also be used to build privacy preserving machine learning algorithms for both training and classification (inference) purposes under strict privacy and security requirements. Our theoretical analysis and experimentation results show that our building blocks (hence also our privacy preserving algorithms which are built on top of them) are more efficient than most (if not all) of the state-of-the-art schemes in terms of computation and communication cost, as well as security characteristics in the semi-honest model. Furthermore, and to the best of our knowledge, for the Naïve Bayes model we extend this efficiency for the first time to also deal with active malicious users, which arbitrarily deviate from the protocol.

Confidential Training and Inference using Secure Multi-Party Computation on Vertically Partitioned Dataset

Scalable Computing: Practice and Experience

Digitalization across all spheres of life has given rise to issues like data ownership and privacy. Privacy-Preserving Machine Learning (PPML), an active area of research, aims to preserve privacy for machine learning (ML) stakeholders like data owners, ML model owners, and inference users. The Paper, CoTraIn-VPD, proposes private ML inference and training of models for vertically partitioned datasets with Secure Multi-Party Computation (SPMC) and Differential Privacy (DP) techniques. The proposed approach addresses complications linked with the privacy of various ML stakeholders dealing with vertically portioned datasets. This technique is implemented in Python using open-source libraries such as SyMPC (SMPC functions), PyDP (DP aggregations), and CrypTen (secure and private training). The paper uses information privacy measures, including mutual information and KL-Divergence, across different privacy budgets to empirically demonstrate privacy preservation with high ML accuracy and...

SecureNN: 3-Party Secure Computation for Neural Network Training

Proceedings on Privacy Enhancing Technologies, 2019

Neural Networks (NN) provide a powerful method for machine learning training and inference. To effectively train, it is desirable for multiple parties to combine their data – however, doing so conflicts with data privacy. In this work, we provide novel three-party secure computation protocols for various NN building blocks such as matrix multiplication, convolutions, Rectified Linear Units, Maxpool, normalization and so on. This enables us to construct three-party secure protocols for training and inference of several NN architectures such that no single party learns any information about the data. Experimentally, we implement our system over Amazon EC2 servers in different settings. Our work advances the state-of-the-art of secure computation for neural networks in three ways: 1. Scalability: We are the first work to provide neural network training on Convolutional Neural Networks (CNNs) that have an accuracy of > 99% on the MNIST dataset; 2. Performance: For secure inference, o...

Secure Computation for Machine Learning With SPDZ

ArXiv, 2019

Secure Multi-Party Computation (MPC) is an area of cryptography that enables computation on sensitive data from multiple sources while maintaining privacy guarantees. However, theoretical MPC protocols often do not scale efficiently to real-world data. This project investigates the efficiency of the SPDZ framework, which provides an implementation of an MPC protocol with malicious security, in the context of popular machine learning (ML) algorithms. In particular, we chose applications such as linear regression and logistic regression, which have been implemented and evaluated using semi-honest MPC techniques. We demonstrate that the SPDZ framework outperforms these previous implementations while providing stronger security.

Private Machine Learning in TensorFlow using Secure Computation

2018

We present a framework for experimenting with secure multi-party computation directly in TensorFlow. By doing so we benefit from several properties valuable to both researchers and practitioners, including tight integration with ordinary machine learning processes, existing optimizations for distributed computation in TensorFlow, high-level abstractions for expressing complex algorithms and protocols, and an expanded set of familiar tooling. We give an open source implementation of a state-of-the-art protocol and report on concrete benchmarks using typical models from private machine learning.

Oblivious Multi-Party Machine Learning on Trusted Processors

2016

Privacy-preserving multi-party machine learning allows multiple organizations to perform collaborative data analytics while guaranteeing the privacy of their individual datasets. Using trusted SGX-processors for this task yields high performance, but requires a careful selection, adaptation, and implementation of machine-learning algorithms to provably prevent the exploitation of any side channels induced by data-dependent access patterns. We propose data-oblivious machine learning algorithms for support vector machines, matrix factorization, neural networks, decision trees, and k-means clustering. We show that our efficient implementation based on Intel Skylake processors scales up to large, realistic datasets, with overheads several orders of magnitude lower than with previous approaches based on advanced cryptographic multi-party computation schemes.

MPC-enabled Privacy-Preserving Neural Network Training against Malicious Attack

2020

In the past decades, the application of secure multiparty computation (MPC) to machine learning, especially privacy-preserving neural network training, has attracted tremendous attention from both academia and industry. MPC enables several data owners to jointly train a neural network while preserving their data privacy. However, most previous works focus on semi-honest threat model which cannot withstand fraudulent messages sent by malicious participants. In this work, we propose a construction of efficient n-party protocols for secure neural network training that can secure the privacy of all honest participants even when a majority of the parties are malicious. Compared to the other designs that provides semi-honest security in a dishonest majority setting, our actively secured neural network training incurs affordable efficiency overheads. In addition, we propose a scheme to allow additive shares defined over an integer ring ℤ_N to be securely converted to additive shares over a...

New Directions in Efficient Privacy-Preserving Machine Learning

2020

Applications of machine learning have become increasingly common in recent years. For instance, navigation systems like Google Maps use machine learning to better predict traffic patterns; Facebook, LinkedIn, and other social media platforms use machine learning to customize user's news feeds. Central to all these systems is user data. However, the sensitive nature of the collected data has also led to a number of privacy concerns. Privacy-preserving machine learning enables systems that can