Optimization of the performance of patch antennas using genetic algorithms (original) (raw)
Related papers
Microstrip antenna optimization using genetic algorithms
2010
The design of a micro-strip patch antenna is proposed by optimizing its resonant frequency, Bandwidth of operation and Radiation resistance using Genetic Algorithm (GA). GA is based on the mechanics of natural genetics and natural selection and good at taking larger, potentially huge, search spaces and navigating them looking for optimal combinations of solutions which we might not find in life time .Optimizing radiation resistance operational bandwidth as high as 25.52 % and return loss -47.5dB is obtained without any complexity of design. The antenna can be used for various applications in fields of mobile communication, satellite communication, RFID, GPS, Radar communication etc.
Calculation of optimized parameters of rectangular microstrip patch antenna using genetic algorithm
Microwave and Optical Technology Letters, 2003
In this paper, the genetic algorithm (GA) has been applied to calculate the optimized length and width of rectangular microstrip antennas. The inputs to the problem are the desired resonant frequency, dielectric constant, and thickness of the substrate; the outputs are the optimized length and width. The antennas considered are electrically thin. Method of moments (MoM)-based IE3D software from Zealand Inc., USA, and experimental results are used to validate the GA-based code. The results are in good agreement. © 2003 Wiley Periodicals, Inc. Microwave Opt Technol Lett 37: 431–433, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.10940
Design and Optimization of Miniaturized Microstrip Patch Antennas Using a Genetic Algorithm
Electronics
The main objective of this work is to propose an approach for improving the performance of miniaturized microstrip patch antennas (MPAs) that are loaded with a thin film consisting of a high relative permittivity material. The method uses a thin film to decrease the antenna’s resonance frequency while keeping the antenna’s patch dimensions. For the enhancement of the antenna’s performance with a thin film, the dimensions of the patch of the designed antenna are optimized utilizing genetic algorithms (GAs). The resonance frequency of the microstrip patch antenna was changed from 5.8 GHz to 4.0 GHz, and the area of the proposed antenna was minimized by around 60%, especially in comparison to a conventional antenna alone without thin film. Most of the performances of the proposed antenna such as the return loss, bandwidth, and voltage standing wave ratio (VSWR) were improved.
Optimum Design of a Probe Fed Dual Frequency Patch Antenna Using Genetic Algorithm
Recent research has concentrated on different designs in order to increase the bandwidth of patch antennas and thus improve functionality of wireless communication systems. An alternative approach as shown in this paper is to design a matched probe fed rectangular patch antenna which can operate at both dual frequency (1.9 GHz and 2.4 GHz) and dual polarisation. In this design there are four variables, the two dimensions of the rectangular patch, 'a' and 'b' and position of the probe feed 'X p ' and 'Y P '. As there is not a unique solution Genetic Algorithm (GA) was applied using two objective functions for the return loss at each frequency. The antenna was then modelled using AWR software and the predicted and practical results are shown to be in good agreement.
The optimization of gain of patch antennas using genetic algorithm
The application of Genetic Algorithm (GA) to the optimization of gains of rectangular and circular microstrip patch a n tennas are reported. In both the cases the tness functions are developed using cavity method for the analysis of microstrip antenna and the GA code was developed using C++ language. The results are veri ed by comparison with the results obtained using MATLAB and some results are supported by experimental verication.
A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization
Progress In Electromagnetics Research C, 2013
A high-directivity patch antenna with broadside directivity is attractive, since a narrow beam can be obtained without the need of using an array of antennas. Therefore, the solution becomes simpler as there is no need for a complicated feeding network. In this sense, this paper presents a novel patch antenna design with high directivity in the broadside direction by using genetic algorithms (GA). The proposed GA method divides the overall patch area into different cells taking into account that cells have a small overlap area between them. This avoids optimized geometries where cells have only an infinitesimal connection. Therefore, the proposed method is robust for manufacturing. The antenna operates in a higher-order mode at 4.12 GHz and the geometry fits inside a patch of 40 mm × 40 mm on a substrate with a relative permittivity of 3.38 and a thickness of 1.52 mm resulting in a directivity of 10.5 dBi. The specialty of this design is the use of GA to select the optimized shape and the feeding position instead of a known shape and a fixed feeding position. The antenna has been fabricated and the simulation results are in good agreement with the measurements. This results in a simpler design of a single high-directivity patch, which can substitute an array of two elements operating in the fundamental mode.
Design of Dual Band Patch Antennas for Cellular Communications by Genetic Algorithm Optimization
International Journal of Engineering & Technology, 2012
Designing multiband antennas with low volume becomes of practical interest for mobile telecommunications. This paper presents the designs of five small dual band patch antennas for GSM1800 (1710-1880MHz) and Bluetooth (2400-2483.5MHz) applications using a genetic algorithm combined with MoM (Method of Moments). A substrate with dielectric constant 3.2 and height 8mm is used for the first two dual band designs. The height is reduced thanks to the optimization process to 6mm in the third design by inserting a shorting pin to the fragmented patch antenna. The height is further reduced to 4mm in the by inserting two shorting pins. In the final design with three shorting pins, the height is only 3mm. The patch dimensions are similar to that of the conventional rectangular patch for the center frequency of the lowest frequency band but with the advantage of having dual-band operation at the desired bands. Genetic algorithm optimization is used to optimize the patch geometry, feed position and shorting positions. HFSS is used to carry out simulations. The antenna thickness is reduced from Design of Dual Band Patch Antennas 27 8mm to 3mm by incorporating shorting pins which position is optimized by the genetic algorithm.
International Journal of Antennas and Propagation, 2015
Genetic algorithm (GA) has been a popular optimization technique used for performance improvement of microstrip patch antennas (MPAs). When using GA, the patch geometry is optimized by dividing the patch area into small rectangular cells. This has an inherent problem of adjacent cells being connected to each other with infinitesimal connections, which may not be achievable in practice due to fabrication tolerances in chemical etching. As a solution, this paper presents a novel method of dividing the patch area into cells with nonuniform overlaps. The optimized design, which is obtained by using fixed overlap sizes, shows a quad-band performance covering GSM1800, GSM1900, LTE2300, and Bluetooth bands. In contrast, use of nonuniform overlap sizes leads to obtaining a pentaband design covering GSM1800, GSM1900, UMTS, LTE2300, and Bluetooth bandswith fractional bands with of 38% due to the extra design flexibility.
Radioengineering
A single high-directivity microstrip patch antenna (MPA) having a rectangular profile, which can substitute a linear array is proposed. It is designed by using genetic algorithms with the advantage of not requiring a feeding network. The patch fits inside an area of 2.54 x 0.25, resulting in a broadside pattern with a directivity of 12 dBi and a fractional impedance bandwidth of 4 %. The antenna is fabricated and the measurements are in good agreement with the simulated results. The genetic MPA provides a similar directivity as linear arrays using a corporate or series feeding, with the advantage that the genetic MPA results in more bandwidth.