NFV-based IoT Security for Home Networks using MUD (original) (raw)
2020, NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium
A new scalable ISP level system architecture to secure and protect all IoT devices in a large number of homes is presented. The system is based on whitelisting, as in the Manufacturer Usage Description (MUD) framework, implemented as a VNF. Unlike common MUD suggestions that place the whitelist application at the home/enterprise network, our approach is to place the enforcement upstream at the provider network, combining an NFV (Network Function Virtualization) with router/switching filtering capabilities, e.g., ACLs. The VNF monitors many home networks simultaneously, and therefore, is a highly-scalable managed service solution that provides both the end customers and the ISP with excellent visibility and security of the IoT devices at the customer premises. The system includes a mechanism to distinguish between flows of different devices at the ISP level despite the fact that most home networks (and their IoT devices) are behind a NAT and all the flows from the same home come out with the same source IP address. Moreover, the NFV system needs to receive only the first packet of each connection at the VNF, and rules space is proportional to the number of unique types of IoT devices rather than the number of IoT devices. The monitoring part of the solution is off the critical path and can also uniquely protect from incoming DDoS attacks. To cope with internal traffic, that is not visible outside the customer premise and often consists of P2P communication, we suggest a hybrid approach, where we deploy a lightweight component at the CPE, whose sole purpose is to monitor P2P communication. As current MUD solution does not provide a secure solution to P2P communication, we also extend the MUD protocol to deal also with peer-to-peer communicating devices. A PoC with a large national level ISP proves that our technology works as expected, identifying the various IoT devices that are connected to the network and detecting any unauthorized communications.