Eye-safe, 243-mJ, rapidly tuned by injection-seeding, near-infrared, optical, parametric, oscillator-based differential-absorption light detection and ranging transmitter (original) (raw)
2012, Journal of Applied Remote Sensing
Here, we demonstrate and characterize a high-energy, eye-safe, spectrally narrow, and frequency-agile near-IR optical parametric oscillator (OPO). The injection-seeded, noncritical phase-matched (NCPM) potassium titanyle arsenate (KTA) and ring-cavity OPO was pumped in single longitudinal mode (SLM) at 7 ns full width at half maximum FWHM and 30 Hz, neodymium-doped yttrium aluminum garnet (Nd:YAG), generating 243 mJ per pulse OPO signal output with a conversion efficiency of 27%, spectral linewidth of 157 MHz, and approximately M 2 of 29. Also, we demonstrate a nonmechanical method to switch the frequency of the OPO at a rate of 2 Hz from 1535.036 to 1535.195 nm, which represents the on/off resonances of carbon dioxide, respectively. However, the switching rate can be extended into the MHz range and is limited by the electronics driving the diode laser. Given the performance results of our frequency-agile OPO, this transmitter has great potential as a source in DIAL applications.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact