Lowstand wedges in carbonate platform slopes (Quaternary, Maldives, Indian Ocean) (original) (raw)

Abstract

Seismic, hydroacoustic and sedimentological data were used to analyse the response of atoll-slope sedimentation in the Maldives to the late Quaternary sea-level change. The slope deposits, as imaged in multichannel seismic profiles, are arranged into stacked aggrading to backstepping basinward thinning wedges. In a piston core recovered at the lower slope of one of the atolls, the sediment texture ranges from packstone to rudstone. Major components are blackened bioclasts, the large benthic foraminifers Operculina and Amphistegina, together with Halimeda debris and red algae. Radiocarbon dating at a core depth of 66 cm indicates that the wedge sedimentation stopped or was largely reduced after 16 ka BP. Therefore, the atoll-slope deposits largely consist of sediment formed in situ and deposited during the last glacial lowstand in sealevel. This is in apparent contradiction to the concept of highstand shedding of tropical carbonate platforms, which requires slope sedimentation during sealevel highstands, when the platform is flooded. Rather than intrinsic factors, such as sediment bypass along the steep slope, the extrinsic process of current winnowing of the slope appears to be a major controlling factor in the production of this feature. This process may be relevant for other case studies of carbonate platforms, as currents may be accelerated around such edifices, leading to slope winnowing and sediment deposition in more current-protected zones. The study results also have consequences for the interpretation of outcrop and seismic subsurface data of carbonate platform slope series, because such slope sediment wedges are not necessarily formed during sea-level highstands, but can consist of lowstand wedges only.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (38)

  1. Sample Depth (mbsf) Algae 1135-2-5H-90-100 5Á16 Lithothamnion prolifer, Lithophyllum acrocamptum, Hydrolithon sp., Lithophyllum gr. pustulatum, Mesophyllum sp. 1135-2-6G-30-35.1 5Á56 Laminar Lithothamnion, Lithoporella sp., Lithophyllum acrocamptum? 1135-2-6G-30-35.2 5Á56 Laminar Lithothamnion, Lithoporella sp., Peyssonnelia sp. 1135-2-7D-60-65 6Á86 Laminar Lithothamnion, Lithophyllum gr. pustulatum, Peyssonnelia sp. 1135-2-9D-10-15 8Á36 Laminar Lithothamnion, Spongites? sp., Peyssonnelia sp. 1135-2-9D-80-87 9Á06 Laminar Lithothamnion, Lithophyllum gr. pustulatum, Peyssonnelia sp. 1135-2-10C-55-57.1 9Á76 Lithothamnion prolifer (heavily bored) in the nucleus, laminar Lithothamnion, Peyssonnelia sp. 1135-2-10C-55-57.2 9Á76 Laminar Lithothamnion, Lithophyllum gr. pustulatum, Peyssonnelia sp. 1135-2-10C-95-100 10Á16 Laminar Lithothamnion, Peyssonnelia sp. 1135-2-12A-22 11Á44 Laminar Lithothamnion, Lithophyllum acrocamptum, Lithoporella sp. 1135-2-12A-94-100 12Á16 Laminar Lithothamnion, Lithophyllum acrocamptum?, Lithoporella sp.
  2. ª 2016 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists.
  3. References Aubert, O. and Droxler, A.W. (1992) General Cenozoic evolution of the Maldives carbonate system (equatorial Indian Ocean). Bull. Centres Rech. Explor.-Prod. Elf- Aquitaine, 16, 113-136.
  4. Belopolsky, A.V. and Droxler, A.W. (2004) Seismic expressions and interpretations of carbonate sequences: the Maldives carbonate platform, equatorial Indian Ocean. AAPG Stud. Geol., 49, 57.
  5. Bergman, K.L., Westphal, H., Janson, X., Poiriez, A. and Eberli, G.P. (2010) Controlling Parameters on Facies Geometries of the an Isolated Carbonate Platform Environment. In: Carbonate Depositional Systems: Assessing Dimensions and Controlling Parameters (Eds H. Westphal, B. Riegl and G.P. Eberli), pp. 5-80. Springer, Heidelberg. Betzler, C., H€ ubscher, C., Lindhorst, S., Reijmer, J.J.G., R€ omer, M., Droxler, A.W., F€ urstenau, J. and L€ udmann, T. (2009) Monsoonal-induced partial carbonate platform drowning (Maldives, Indian Ocean). Geology, 37, 867-870.
  6. Betzler, C., F€ urstenau, J., L€ udmann, T., H€ ubscher, C., Lindhorst, S., Paul, A., Reijmer, J.J.G. and Droxler, A.W. (2013a) Sea-level and ocean-current control on carbonate- platform growth, Maldives, Indian Ocean. Basin Res., 25, 172-196.
  7. Betzler, C., L€ udmann, T., H€ ubscher, C. and F€ urstenau, J. (2013b) Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean). Sed. Geol., 290, 126- 137. Betzler, C., Lindhorst, S., L€ udmann, T., Weiss, B., Wunsch, M. and Braga, J.C. (2015) The leaking bucket of a Maldives atoll: implications for the understanding of carbonate platform drowning. Mar. Geol., 366, 16-33.
  8. Betzler, C., Eberli, G.P., Kroon, D., Wright, J.D., Swart, P.K., Nath, B.N., Alvarez-Zarikian, C.A., Alonso-Garc ıa, M., Bialik, O.M., Bl€ attler, C.L., Guo, J.A., Haffen, S., Horozal, S., Inoue, M., Jovane, L., Lanci, L., Laya, J.C., Mee, A.L.H., L€ udmann, T., Nakakuni, M., Niino, K., Petruny, L.M., Pratiwi, S.D., Reijmer, J.J.G., Reolid, J., Slagle, A.L., Sloss, C.R., Su, X., Yao, Z. and Young, J.R. (2016) The abrupt onset of the modern South Asian Monsoon winds. Sci. Rep., 6, 29838.
  9. Chabaud, L., Ducassou, E., Tournadour, E., Mulder, T., Reijmer, J.J.G., Conesa, G., Giraudeau, J., Hanquiez, V., Borgomano, J. and Ross, L. (2016) Sedimentary processes determining the modern carbonate periplatform drift of Little Bahama Bank. Mar. Geol., 378, 213-229.
  10. Darwin, C. (1842) Structure and Distribution of Coral Reefs. Smith, Elder & Co., London, 214 pp.
  11. Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A.L., Henderson, G.M., Okuno, J.I. and Yokoyama, Y. (2012) Ice-sheet collapse and sea-level rise at the Bolling warming 14,600 years ago. Nature, 483, 559-564.
  12. Droxler, A.W., Haddad, G.A., Mucciarone, D.A. and Cullen, J.L. (1990) Pliocene-Pleistocene aragonite cyclic variations in Holes 714A and 716B (the Maldives) compared with Hole 633A (the Bahamas): records of climate-induced CaCO3 preservation at intermediate water depths. Proc. ODP Sci. Results, 115, 539-577.
  13. Eberli, G.P. and Ginsburg, R.N. (1987) Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology, 15, 75-79.
  14. Fl€ ugel, E. (2004) Microfacies of Carbonate Rocks. Springer- Verlag, Berlin, 976 pp.
  15. F€ urstenau, J., Lindhorst, S., Betzler, C. and H€ ubscher, C. (2010) Submerged reef terraces of the Maldives (Indian Ocean). Geo-Marine Lett., 30, 511-515.
  16. Gischler, E., Hudson, J.D. and Pisera, A. (2008) Late Quaternary reef growth and sea level in the Maldives (Indian Ocean). Mar. Geol., 250, 104-113.
  17. Grammer, G.M. and Ginsburg, R.N. (1992) Highstand versus lowstand deposition on carbonate platform margins: insight from Quaternary foreslopes in the Bahamas. Mar. Geol., 103, 125-136.
  18. Hohenegger, J. (2000) Coenoclines of larger foraminifera. Micropaleontology, 46, 127-151.
  19. Jo, A., Eberli, G.P. and Grasmueck, M. (2015) Margin collapse and slope failure along southwestern Great Bahama Bank. Sed. Geol., 317, 43-52.
  20. Kenter, J.A.M. (1990) Carbonate platform flanks: slope angle and sediment fabric. Sedimentology, 37, 777-794.
  21. Lambeck, K., Rouby, H., Purcell, A., Sun, Y. and Sambridge, M. (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA, 111, 15296-15303.
  22. L€ udmann, T., Kalvelage, C., Betzler, C., F€ urstenau, J. and H€ ubscher, C. (2013) The Maldives, a giant isolated carbonate platform dominated by bottom currents. Mar. Pet. Geol., 43, 326-340.
  23. L€ udmann, T., Paulat, M., Betzler, C., M€ obius, J., Lindhorst, S., Wunsch, M. and Eberli, G.P. (2016) Carbonate mounds in the Santaren Channel, Bahamas: a current-dominated periplatform depositional regime. Mar. Geol., 376, 69-85.
  24. Mulder, T., Ducassou, E., Eberli, G.P., Hanquiez, V., Gonthier, E., Kindler, P., Principaud, M., Fournier, F., L eonide, P., Billeaud, I., Marsset, B., Reijmer, J.J.G., Bondu, C., Joussiaume, R. and Pakiades, M. (2012) New insights into the morphology and sedimentary processes along the western slope of Great Bahama Bank. Geology, 40, 603-606.
  25. Neumann, A.C. and Ball, M.M. (1970) Submersible observations in the Straits of Florida: geology and bottom currents. Geol. Soc. Am. Bull., 81, 2861-2874.
  26. Owen, A., Kruijsen, J., Turner, N. and Wright, K. (2011) Marine Energy in the Maldives. Prefeasibility report on Scottish Support for Maldives Marine Energy Implementation, Main Report. Centre for Understanding Sustainable Practice, Robert Gordon University, Aberdeen, UK. Paul, A., Reijmer, J.J.G., F€ urstenau, J., Kinkel, H. and Betzler, C. (2012) Relationship between Late Pleistocene sea-level variations, carbonate platform morphology and aragonite production (Maldives, Indian Ocean). Sedimentology, 59, 1540-1658.
  27. Preu, C. and Engelbrecht, C. (1991) Patterns and processes shaping the present morphodynamics of coral reef islands. Case study from the North-Male atoll, Maldives (Indian Ocean). In: From the North Sea to the Indian Ocean (Eds H. Br€ uckner and U. Radtke), pp. 209-220. Franz Steiner, Stuttgart. Principaud, M., Ponte, J.P., Mulder, T., Gillet, H., Robin, C. and Borgomano, J. (2016) Slope-to-basin stratigraphic evolution of the northwestern Great Bahama Bank (Bahamas) during the Neogene to Quaternary: interactions between downslope and bottom currents deposits. Basin Res.. doi:10.1111/bre.12195.
  28. Purdy, E.G. and Bertram, G.T. (1993) Carbonate concepts from the Maldives, Indian Ocean. AAPG Stud. Geol., 34, 56.
  29. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt e, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and van der Plicht, J. (2013) IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon, 55, 1869-1887.
  30. Rendle-B€ uhring, R.H. and Reijmer, J.J.G. (2005) Controls on grain-size patterns in periplatform carbonates: marginal setting versus glacio-eustacy. Sed. Geol., 175, 99-113.
  31. Schlager, W. and Camber, O. (1986) Submarine slope angles, drowning unconformities and self-erosion of limestone escarpments. Geology, 14, 762-765.
  32. Schlager, W., Reijmer, J.J.G. and Droxler, A.W. (1994) Highstand shedding of carbonate platforms. J. Sed. Res., 64, 270-281.
  33. Stuiver, M. and Reimer, P.J. (1993) Extended 14 C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35, 215-230.
  34. Tomczak, M. and Godfrey, J.S. (2003) Regional Oceanography: An Introduction. Daya Publishing House, Delhi, 390 pp. Available at: www.es.flinders.edu.au/\~mattom/regoc/ pdfversion.html.
  35. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E. and Gillet, H. (2015) Origin and architecture of a Mass Transport Complex on the northwest slope of Little Bahama Bank (Bahamas): relations between off-bank transport, bottom current sedimentation and submarine landslides. Sed. Geol., 317, 9-26.
  36. Webster, J.M., Braga, J.C., Clague, D.A., Gallup, C., Hein, J.R., Potts, D.C., Renema, W., Riding, R., Riker-Coleman, K., Silver, E. and Wallace, L.M. (2009) Coral reef evolution on rapidly subsiding margins. Global Planet. Change, 66, 129-148.
  37. Wilson, M.E.J. and Vecsei, A. (2005) The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth Sci. Rev., 69, 133-168.
  38. Wunsch, M., Betzler, C., Lindhorst, S., L€ udmann, T. and Eberli, G.P. (2016) Sedimentary dynamics along carbonate slopes (Bahamas archipelago). Sedimentology. doi:10.1111/ sed.12317.