NONLINEAR ESTIMATION WITH STATE-DEPENDENT GAUSSIAN OBSERVATION NOISE (original) (raw)

Abstract

We consider the problem of estimating the state of a system when measurement noise is a function of the system's state. We propose generalizations of the iterated extended Kalman filter and of the extended Kalman filter that can be utilized when the state estimate distribution is approximately Gaussian. The state estimate is computed by an iterative rootsearching method that maximize a maximum likelihood function. For sensor network applications, we also address distributed implementations involving multiple sensors.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (44)

  1. Y. Bar-Shalom and T. E. Fortman. Tracking and data association. Academic Press, 1988.
  2. B. M. Bell and F. W. Cathey. The iterated Kalman filter update as a Gauss-Newton method. IEEE Transactions on Automatic Control, 38(2):294-297, 1993.
  3. C. Belta and V. Kumar. Abstraction and control for groups of robots. IEEE Transac- tions on Robotics, 20(5):865-875, October 2004.
  4. D. S. Bernstein. Matrix Mathematics. Princeton University Press, 2005.
  5. D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed computation: numerical methods. Prentice Hall, Englewood Cliffs, New Jersey, 1989.
  6. F. Bourgault and H. F. Durrant-Whyte. Communication in general decentralized fil- ters and the coordinated search strategy. In Proceedings of the Seventh International Conference on Information Fusion, Stockholm, Sweden, 28 June -1 July 2004.
  7. T. H. Chung, J. W. Burdick, and R. M. Murray. Decentralized motion control of mobile sensing agents in a network. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006.
  8. T. H. Chung, V. Gupta, J. W. Burdick, and R. M. Murray. On a decentralized active sensing strategy using mobile sensor platforms in a network. In Proceedings of the IEEE conference on Decision and Control, Paradise Island, Bahamas, December 2004.
  9. J. Cortés, S. Martínez, T. Karatas, and F. Bullo. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 20(2):243-255, 2004.
  10. K. Dogançai. On the efficiency of a berings-only instrumental variable estimator for a target motion analysis. Signal Processing, 85:481-490, 2005.
  11. H. F. Durrant-Whyte, B. Y. S. Rao, and H. Hu. Toward a fully decentralized architecture for multi-sensor data fusion. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 2, pages 1331 -1336, 13-18 May 1990.
  12. A. Farina. Target tracking with bearings-only measurements. Signal Processing, 78:61- 78, 1999.
  13. J. A. Fax and R. M. Murray. Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9):1465-1476, September 2004.
  14. R. A. Freeman, P. Yang, and K. M. Lynch. Distributed estimation and control of swarm formation statistics. In Proceedings of the American Control Conference, pages 749-755, Minneapolis, Minnesota USA, June 14-16 2006.
  15. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29(2):131-163, October 1997.
  16. A. Gadre, M. Roan, and D. J. Stilwell. Sensor model for a uniform linear array. Technical Report 2008-01, VaCAS, 2008.
  17. S. Grime and H. F. Durrant-Whyte. Data fusion in decentralized sensor networks. Control Engineering Practice, 2(5):849-863, 1994.
  18. R. A. Iltis and K. L. Anderson. A consistent estimation criterion for multisensor bearing- only tracking. IEEE Transactions on Aerospace and Electronic Systems, 32(1):108-120, January 1996.
  19. K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control, 45(5):910-927, May 2000.
  20. J. Julier, S. Uhlmann and H. F. Durrant-Whyte. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3):477-482, 2000.
  21. J. P. Le Cadre and C. Jauffret. On the convergence of iterative methods for bearing-only tracking. IEEE Transactions on Aerospace and Electronic Systems, 35(3):801-818, July 1999.
  22. T Lefebvre, H. Bruyninckx, and J. De Schutter. Comment on 'A new method for the nonlinear transformation of means and covariances in filters and estimators'. IEEE Transactions on Automatic Control, 47(8):1406-1408, 2002.
  23. T. Lefebvre, H. Bruyninckx, and J. De Shutter. Kalman filters for non-linear systems: a comparison of performance. International Journal of Control, 77(7):639-653, 2004.
  24. A. Logothetis, A. Isaksson, and R. J. Evans. Comparison of suboptimal strategies for optimal own-ship maneuvers in bearing-only tracking. In Proocedings of the American Control Conference, pages 3334-3338, Philadelphia, Pennsylvania, June 1996.
  25. A. Logothetis, A. Isaksson, and R. J. Evans. An information theoretic approach to observer path design for bearings-only tracking. In Proceedings of the 36th Conference on Decision and Control, pages 3132-3137, San Diego, California, Dec. 1997.
  26. A. Makarenko and H. F. Durrant-Whyte. Decentralized data fusion and control in active sensor networks. In Proceedings of the Seventh International Conference on Information Fusion, Stockholm, Sweden, 28 June -1 July 2004.
  27. J. Manyika and H. Durrant-Whyte. Data fusion and sensor management: a decentralized information-theoretic approach. Ellis Horwood, London, 1994.
  28. S. Martínez and F. Bullo. Optimal sensor placement and motion coordination for target tracking. Automatica, 42(4):661-668, 2006.
  29. P. S. Maybeck. Stochastic models, estimation, and control, volume 2 of Mathematics in Science and Engineering. Academic Press, New York, 1982.
  30. A. G. O. Mutambara. Decentralized estimation and control for multisensor systems. CRC Press LLC, Boca Raton, Florida, 1998.
  31. M. Nørgaard, N. Poulsen, and O. Ravn. New developments in state estimations for nonlinear systems. Automatica, 36(11):1627-1638, 2000.
  32. Y. Oshman and P. Davidson. Optimization of observer trajectories for bearings-only target localization. IEEE Transactions on Aerospace and Electronic Systems, 35(3):892- 902, 1999.
  33. M. Porfiri, D. G. Roberson, and D. J. Stilwell. Tracking and formation control of multiple autonomous agents: A two-level consensus approach. Automatica, 43(8):1318- 1328, 2007.
  34. T. Schei. A finite-difference method for linearisation in nonlinear estimation algorithms. Automatica, 33(11):2053-2058, 1997.
  35. J. Shao. Mathematical Statistics. Springer texts in statistics. Springer Verlag, New York, 1999.
  36. G. Sibley, G. Suckhatme, and L. Matthies. The iterated sigma point Kalman filter with application to long range stereo. In Proceedings of Robotics: Science and Systems, Philadelphia, PA, August 2006.
  37. S. Simic and S. Sastry. Distributed environmental monitoring using random sensor networks. In Proceeding of the 2nd International Workshop on Information Processing in Sensor Networks, pages 582-592, Palo Alto, CA, 2003.
  38. S. Susca, S. Martínez, and F. Bullo. Monitoring environmental boundaries with a robotic sensor network. In Proceedings of the American Control Conference, pages 2072-2077, 2006.
  39. S. Thrun, Y. Liu, Koller D., and A. Y. Ng. Simultaneous localization and mapping with sparse extended information filters. International Journal of Robotics Research, 23(7-8):693-716, July-August 2004.
  40. R. van der Merve. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. PhD thesis, Oregon Health & Science University, OGI School of Science & Engineering, 2004.
  41. P. Yang, R. A. Freeman, and K. M. Lynch. Distributed cooperative active sensing using consensus filters. In Proceedings of the IEEE International Conference on Robotics and Automation, Roma, Italy, Feb. 2007.
  42. B. Zehnwirth. A generalization of the Kalman filter for models with state-dependent observation variance. Journal of the American Statistical Association, 83(401):164-167, 1988.
  43. R. Zhan and J. Wan. Iterated unscented Kalman filter for passive target tracking. IEEE Transactions on Aerospace and Electronic Systems, 43(3):1155-1163, July 2007.
  44. K. X. Zhou and S. I. Roumeliotis. Optimal motion strategies for range-only distributed target tracking. In Proceedings of the American Control Conference, pages 5195-5200, Minneapolis, Minnesota USA, June 14-16 2006.