Regulation of skeletal muscle atrophy (original) (raw)
Related papers
Mechanisms of IGF-1-Mediated Regulation of Skeletal Muscle Hypertrophy and Atrophy
Cells
Insulin-like growth factor-1 (IGF-1) is a key growth factor that regulates both anabolic and catabolic pathways in skeletal muscle. IGF-1 increases skeletal muscle protein synthesis via PI3K/Akt/mTOR and PI3K/Akt/GSK3β pathways. PI3K/Akt can also inhibit FoxOs and suppress transcription of E3 ubiquitin ligases that regulate ubiquitin proteasome system (UPS)-mediated protein degradation. Autophagy is likely inhibited by IGF-1 via mTOR and FoxO signaling, although the contribution of autophagy regulation in IGF-1-mediated inhibition of skeletal muscle atrophy remains to be determined. Evidence has suggested that IGF-1/Akt can inhibit muscle atrophy-inducing cytokine and myostatin signaling via inhibition of the NF-κΒ and Smad pathways, respectively. Several miRNAs have been found to regulate IGF-1 signaling in skeletal muscle, and these miRs are likely regulated in different pathological conditions and contribute to the development of muscle atrophy. IGF-1 also potentiates skeletal mu...
Molecular and Cellular Biology, 2009
Skeletal muscle atrophy caused by unloading is characterized by both decreased responsiveness to myogenic growth factors (e.g., insulin-like growth factor 1 [IGF-1] and insulin) and increased proteolysis. Here, we show that unloading stress resulted in skeletal muscle atrophy through the induction and activation of the ubiquitin ligase Cbl-b. Upon induction, Cbl-b interacted with and degraded the IGF-1 signaling intermediate IRS-1. In turn, the loss of IRS-1 activated the FOXO3-dependent induction of atrogin-1/MAFbx, a dominant mediator of proteolysis in atrophic muscle. Cbl-b-deficient mice were resistant to unloading-induced atrophy and the loss of muscle function. Furthermore, a pentapeptide mimetic of tyrosine608-phosphorylated IRS-1 inhibited Cbl-b-mediated IRS-1 ubiquitination and strongly decreased the Cbl-b-mediated induction of atrogin-1/MAFbx. Our results indicate that the Cbl-b-dependent destruction of IRS-1 is a critical dual mediator of both increased protein degradatio...
American Journal of Physiology-Endocrinology and Metabolism, 2004
Muscle atrophy results primarily from accelerated protein degradation and is associated with increased expression of two muscle-specific ubiquitin ligases (E3s): atrogin-1 and muscle ring finger 1 (MuRF1). Glucocorticoids are essential for many types of muscle atrophy, and their effects are opposite to those of insulin-like growth factor I (IGF-I) and insulin, which promote growth. In myotubes, dexamethasone (Dex) inhibited growth and enhanced breakdown of long-lived cell proteins, especially myofibrillar proteins (as measured by 3-methylhistidine release), while also increasing atrogin-1 and MuRF1 mRNA. Conversely, IGF-I suppressed protein degradation and prevented the Dex-induced increase in proteolysis. IGF-I rapidly reduced atrogin-1 expression within 1 h by blocking mRNA synthesis without affecting mRNA degradation, whereas IGF-I decreased MuRF1 mRNA slowly. IGF-I and insulin also blocked Dex induction of these E3s and several other atrophy-related genes (“atrogenes”). Changes ...
Regulation of Muscle Atrophy in Aging and Disease
Muscle aging is characterized by a decline in functional performance and restriction of adaptability, due to progressive loss of muscle tissue coupled with a decrease in strength and force output. Together with selective activation of apoptotic pathways, a hallmark of age-related muscle loss or sarcopenia is the progressive incapacity of regeneration machinery to replace damaged muscle. These characteristics are shared by pathologies involving muscle wasting, such as muscular dystrophies or amyotrophic lateral sclerosis, cancer and AIDS, all characterized by alterations in metabolic and physiological parameters, progressive weakness in specific muscle groups. Modulation of extracellular agonists, receptors, protein kinases, intermediate molecules, transcription factors and tissue-specific gene expression collectively compromise the functionality of skeletal muscle tissue, leading to muscle degeneration and persistent protein degradation through activation of proteolytic systems, such as calpain, ubiquitin-proteasome and caspase. Additional decrements in muscle growth factors compromise skeletal muscle growth, differentiation, survival and regeneration. A better understanding of the mechanisms underlying the pathogenesis of muscle atrophy and wasting associated with different diseases has been the objective of numerous studies and represents an important first step for the development of therapeutic approaches. Among these, insulin-like growth factor-1 (IGF-1) has emerged as a growth factor with a remarkably wide range of actions and a tremendous potential as a therapeutic in attenuating the atrophy and frailty associated with muscle aging and diseases. In this chapter we provide an overview of current concepts in muscle atrophy, focusing specifically on the molecular basis of IGF-1 action and survey current gene and cell therapeutic approaches to rescue muscle atrophy in aging and disease.
AJP: Heart and Circulatory Physiology, 2010
Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle p...
Atrogin-1/MAFbx and MuRF1 Are Downregulated in Aging-Related Loss of Skeletal Muscle
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2006
Muscle atrophy in many conditions share a common mechanism in the upregulation of the muscle-specific ubiquitin E3-ligases atrophy gene-1/muscle atrophy F-box (Atrogin-1/MAFbx) and muscle ring-finger protein 1 (MuRF1). E3-ligases are part of the ubiquitin proteasome pathway utilized for protein degradation during muscle atrophy. In this study, we provide new data to show that this is not the case in age-related loss of muscle mass (sarcopenia). On the contrary, Atrogin-1/MAFbx and MuRF1 are downregulated in skeletal muscle of 30-month-old rats, and our results suggest that AKT (protein kinase B)-mediated inactivation of forkhead box O 4 (FOXO4) underlies this suppression. The data also suggest that activation of AKT is mediated through the insulin-like growth factor-1 (IGF-1) receptor, signaling via ShcA-Grb2-GAB. Using dietary restriction, we find that it impedes sarcopenia as well as the effects of aging on AKT phosphorylation, FOXO4 phosphorylation, and Atrogin-1/MAFbx and MuRF1 transcript regulation. We conclude that sarcopenia is mechanistically different from acute atrophies induced by disuse, disease, and denervation.
Frontiers in Nutrition, 2019
Sarcopenia is defined as the combined loss of skeletal muscle strength, function, and/or mass with aging. This degenerative loss of muscle mass is associated with poor quality of life and early mortality humans. The loss of muscle mass occurs due to acute changes in daily muscle net protein balance (NPB). It is generally believed a poor NPB occurs due to reduced muscle protein synthetic responses to exercise, dietary amino acid availability, or an insensitivity of insulin to suppress breakdown. Hence, aging muscles appear to be resistant to the anabolic action of exercise and protein (amino acids or hormonal) when compared to their younger counterparts. The mechanisms that underpin anabolic resistance to anabolic stimuli (protein and resistance exercise) are multifactorial and may be partly driven by poor lifestyle choices (increased sedentary time and reduced dietary protein intake) as well as an inherent dysregulated mechanism in old muscles irrespective of the environmental stimuli. The insulin like growth factor 1 (IGF-1), Akt /Protein Kinase B and mechanistic target of rapamycin (mTOR) pathway is the primary driver between mechanical contraction and protein synthesis and may be a site of dysregulation between old and younger people. Therefore, our review aims to describe and summarize the differences seen in older muscle in this pathway in response to resistance exercise (RE) and describe approaches that researchers have sought out to maximize the response in muscle. Furthermore, this review will present the hypothesis that inositol hexakisphosphate kinase 1 (IP6K1) may be implicated in IGF-1 signaling and thus sarcopenia, based on recent evidence that IGF-1 and insulin share some intracellular bound signaling events and that IP6K1 has been implicated in skeletal muscle insulin resistance.
Reasons for the degeneration of ageing skeletal muscle: a central role for IGF-1 signalling
2002
This paper examines two major possibilities for the striking loss of skeletal muscle mass and strength that occurs in very old animals and humans. It is concluded that muscle regeneration is not significantly impaired with age. Instead, it seems that individual myofibres undergo atrophy, with selective death of the fast type 2B myofibres, due to the combined effects of many
Frontiers in Physiology, 2016
The ever increasing burden of an aging population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as "simple" atrophy) and insulin resistance are "non-pathological" events resulting from sedentary behavior and periods of enforced immobilization e.g., due to fractures or elective orthopedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear-especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilization lowers fasted state muscle protein synthesis (MPS) and induces fed-state "anabolic resistance." While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic "marker" studies (e.g., MPB genes) suggest a potential early elevation. Immobilization also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g., Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocols.