Nautical electronic maps of S-411 standard and their suitability in navigation for assessment of ice cover condition of the Arctic Ocean (original) (raw)

Consistency of data presented on modern maps of ice cover in the Arctic

Polish Cartographical Review, 2016

Information about the condition of ice cover on surface of the water, which are the content of map, are important for carrying out safe navigation and efficient economic activity in the polar regions. Methods of mapping can be fully automated on the basis of developed through years of experience algorithms or additionally supported by experienced professionals. The content of some of those now commonly encountered maps is compiled on the basis of mixed methods. In this work geographic positions of ice maps content are analyzed taking into consideration their usefulness for planning ship’s voyage in ice. The results of this work allow using the contents of studied maps for determining the ship’s route in ice and voyage planning of the ship in ice according to her hull strengthening.The ice maps often have boundary lines for different values of reference. The maximum width of the strips of each boundary line within the Marginal Ice Zone is 100 km. The mean square error of position of ...

Towards an Automatic Ice Navigation Support System in the Arctic Sea

ISPRS International Journal of Geo-Information, 2016

Conventional ice navigation in the sea is manually operated by well-trained navigators, whose experiences are heavily relied upon to guarantee the ship's safety. Despite the increasingly available ice data and information, little has been done to develop an automatic ice navigation support system to better guide ships in the sea. In this study, using the vector-formatted ice data and navigation codes in northern regions, we calculate ice numeral and divide sea area into two parts: continuous navigable area and the counterpart numerous separate unnavigable area. We generate Voronoi Diagrams for the obstacle areas and build a road network-like graph for connections in the sea. Based on such a network, we design and develop a geographic information system (GIS) package to automatically compute the safest-and-shortest routes for different types of ships between origin and destination (OD) pairs. A visibility tool, Isovist, is also implemented to help automatically identify safe navigable areas in emergency situations. The developed GIS package is shared online as an open source project called NavSpace, available for validation and extension, e.g., indoor navigation service. This work would promote the development of ice navigation support system and potentially enhance the safety of ice navigation in the Arctic sea.

The problem of the availability of nautical charts and publications on the Northern Sea Route

Polish Cartographical Review, 2015

Statistical studies of marine accidents and unfortunate events in ice-covered areas in 1995–2004 and 2004–2011 showed a general lack of information from the area under the jurisdiction of the Russian Federation. The author’s research for the period 2004–2011 showed a large number of unfortunate events caused by lack of adequate provision of nautical charts, shortage of accurate position systems on board vessels as well as weak technical condition of these vessels. The author examined the problem of navigation safety on the Northern Sea Route in terms of availability of the official nautical charts and publications.The availability of official nautical publications supplied by global producers is more diverse and ambiguous than it is in case of nautical charts. Surprising is lack of Russian publications related to tides and unavailability of a guide for planning routes on Northern Sea Route issued by Russia in Russian and English languages.Global producers of official charts and naut...

Accuracy of Sea Ice Data from Remote Sensing Methods, its Impact on Safe Speed Determination and Planning of Voyage in Ice-Covered Areas

TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 2016

The data related to ice floe concentration and ice thickness were analysed. Sources of data have been verified by visual observation and by comparison in between information from different remote sensing sources. The results of this work exceeded initial expectations. The discrepancies of the information provided by various data sources result from the error of the measurement method, which can be as high as 15% of the concentration of ice floes. It should also be borne in mind that the more generalized information about the state of the ice cover, the lower probability of detection of ice floe patches of a high concentration and spatial extent. Each vessel that is planning voyage in ice should take into consideration inaccurate estimation of concentration and thickness of ice floes received by means of satellite remote sensing methods. The method of determining permissible speed of various ice class vessel in ice on basis of safe speed graph for the icebreaker was developed. A well-defined equation approximates relationship between speed of the icebreaker and the vessels of specified ice classes. Average distance of 24.1 Nm from sea ice extent line was related to all analysed lines representing 30-40% ice floe concentration (IUP product excluded) and 30.6 Nm for analysed lines representing 70-81-91% ice floe concentration. The maximal average distance of the furthest analysed line (IUP product excluded) was equal 37.2 Nm. The average standard deviation of that results was equal 8.3 Nm only. Average distances of analysed lines from sea ice extent line to maximal ice data values were found as follow: 8.4 Nm (23%) for NSIDC-CCAR ice age, 12.3 Nm (33%) for minimal distance of 30-40% ice concentration, 15.4 Nm (41%) for OSISAF ice type "ambiguous" zone from Open Water side, 25 Nm (67%) for minimal distance of 70-81-91% ice concentration, 26.6 Nm (72%) for OSISAF ice type "ambiguous" zone from 1st year ice age side, 35.9 Nm (97%) for maximal distance of 30-40% ice concentration and 36.3 Nm (98%) for maximal distance of 70-81-91% ice concentration data. In the parentheses placed relative distances from first ice data including IUP 40% concentration isolines. Sea ice extent of most of available data sources delineated the edge of "area to be avoided" for vessels of ice class lower than L1. Estimated average speed of L3 ice class vessel was from 3.3 knots till 5.2 knots at average speed 5.0 knots. For L1 ice class vessel estimated average speed was from 6.5 knots till 12.1 knots at average speed 9.7 knots. Relative standard deviation of averaged speed for both ice class vessels was equal 18%. The highest relative deviations were found up to 50% below the average speed value. The highest relative deviations upward were equal 22%. Above speeds for L3 and L1 ice class vessels corresponded well with average technical speed of "Norilsk SA-15" ULA class vessel equal 12,6 knots. The results of the work were not intended to be used for decision making on spot-"on-scene"-during direct guiding vessel in ice. They should be useful for initial voyage planning to allow decision-makers to identify the best freely available data sources for considered voyage and vessel of defined ice class; to understand advantages and limitations of available in the internet data sources; to estimate vessel's maximal safe speed in encountered ice conditions, to estimate spatial distribution and correlations in between various levels of sea ice concentration and thickness. All above data allow estimate voyage time that is, in addition to fuel consumption, basic criterion of maritime transport economics.

Electronic Navigational Charts: International Standards and Map Projections

Journal of Marine Science and Engineering

Electronic navigational charts (ENCs) are geospatial databases, compiled for the operational use of Electronic Chart Display and Information systems (ECDIS) according to strict technical specifications of the International Hydrographic Organization (IHO). ECDIS is a GIS system designed for marine navigation according to the relevant standards of the International Maritime Organization (IMO). The international standards for ENCs and ECDIS, issued by the IHO and IMO, cover many aspects of the portrayal of ENCs in ECDIS but do not specify or recommend map projections. Consequently, in some cases, the unjustified employment of map projections by the manufacturers has caused certain functional drawbacks and inadequacies. This article reviews, evaluates and supplements the results of earlier studies on the selection of map projections for the depiction of ENCs in ECDIS and proposes a reasonable set of suitable projections with pertinent selection/implementation rules. These proposals took...

ERS-1 ice monitoring of the northern sea route

The ice conditions off the Siberian coast, which has recently been opened for international ship traffic, impose severe restrictions on the navigation along the Northern Sea Route. The Russian icebreaker fleet, which is responsible for all sea transportation in the area, uses an extensi ve ice monitoring and forecasting service to assist in the navigation. Presently, this service does not utilize existing SAR data from satellite. In a pilot demonstration project ERS-l SAR images have been used to monitor sea ice conditions in the Kara Sea at different times of the year. The SAR images have shown good capability to map drifting mul tiyear and first year ice, landfast ice, leads/polynyas and areas of thin ice. The results of the demonstration have been presented to the Russian Ice Service including some icebreakers. SAR images, which will cover larger areas and be available from several satellites from 1995, are expected to become an important component in the ice monitoring system fo...

Nautical cartography competences and their effect to the realisation of a worldwide Electronic Navigational Charts database, the performance of ECDIS and the fulfilment of IMO chart carriage requirements

Marine Policy, 2017

This paper is concerned with the implementation and realisation of a Worldwide Electronic Navigational Charts Database (WEND), adopted by the International Hydrographic Organization (IHO) and its members in supporting marine navigation. It identifies the issue of gaps and overlaps between adjoining Electronic Navigational Charts (ENCs) and explores its consequences to the operation of Electronic Chart Display and Information Systems (ECDIS) and the fulfilment of International Maritime Organization (IMO) chart carriage requirements. As the ENCs production is directly dependent on states' cartographic competences, this paper delves into the coastal states' jurisdiction in accordance with international law of the sea, and in particular the United Nations Convention on the Law of the Sea, and ΙΗΟ and IMO instruments. Through a case study on recently produced ENCs in the Mediterranean and more specifically in the Aegean Sea, this paper documents the necessity to respect states' cartographic competences in realising the WEND concept and cautions that, otherwise, new and extended overlaps emerge, which pose a risk to the safety of navigation, and, at the same time, become means through which states may promote their geopolitical aspirations as to jurisdiction over certain marine areas.