Estimated susceptibility of Canadian meningococcal B isolates to a meningococcal serogroup B vaccine (MenB-FHbp) (original) (raw)
Related papers
Vaccine, 2013
Background: In collaboration with the Canadian Immunization Monitoring Program Active (IMPACT), the National Microbiology Laboratory, the UK Health Protection Agency and Novartis Vaccines, we tested the potential of an investigational 4-component meningococcal B vaccine (4CMenB) to cover Canadian strains circulating from 2006 to 2009. Methods: IMPACT meningococcal surveillance is population based and includes over 50% of Canadian adults and children. All isolates were characterized by Meningococcal Antigen Typing System (MATS) and sequencing for factor H-binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial adhesin A (NadA). Results: In total, 157 isolates were tested. Overall, 4CMenB MATS predicted strain coverage was 66% (95% CI: 46-78%), with 26%, 29% and 11% of strains covered by one, two and three vaccine antigens, respectively. The coverage of each antigen was as follows: 13% PorA, 1% NadA, 52% fHbp and 51% NHBA. The majority of strains for clonal complex (cc) 41/44 and cc60 were covered by NHBA; the majority of strains for cc269 and cc32 were covered by fHbp and NHBA. Coverage for two prevalent strains (sequence type (ST)-269 and ST-154) was 95% and 100%, respectively. Conclusions: 4CMenB has the potential to protect against a significant proportion of Canadian invasive MenB strains.
mBio, 2018
Bivalent rLP2086 (Trumenba), a vaccine for prevention ofserogroup B (NmB) disease, was licensed for use in adolescents and young adults after it was demonstrated that it elicits antibodies that initiate complement-mediated killing of invasive NmB isolates in a serum bactericidal assay with human complement (hSBA). The vaccine consists of two factor H binding proteins (fHBPs) representing divergent subfamilies to ensure broad coverage. Although it is the surrogate of efficacy, an hSBA is not suitable for testing large numbers of strains in local laboratories. Previously, an association between thefHBP surface expression level and the susceptibility of NmB isolates to killing was observed. Therefore, a flow cytometric meningococcal antigen surface expression (MEASURE) assay was developed and validated by using an antibody that binds to all fHBP variants from both fHBP subfamilies and accurately quantitates the level of fHBP expressed on the cell surface of NmB isolates with mean fluor...
Selection of diverse strains to assess broad coverage of the bivalent FHbp meningococcal B vaccine
npj Vaccines
MenB-FHbp is a recombinant meningococcal serogroup B (MenB) vaccine composed of 2 factor H binding proteins (FHbps). Meningococcal vaccines targeting polysaccharide serogroup A, C, Y, and W capsules were licensed upon confirmation of bactericidal antibody induction after initial efficacy studies with serogroup A and C vaccines. Unlike meningococcal polysaccharide vaccines, wherein single strains demonstrated bactericidal antibodies per serogroup for each vaccine, MenB-FHbp required a more robust approach to demonstrate that bactericidal antibody induction could kill strains with diverse FHbp sequences. Serum bactericidal assays using human complement were developed for 14 MenB strains, representing breadth of meningococcal FHbp diversity of ~80% of circulating MenB strains. This work represents an innovative approach to license a non-toxin protein vaccine with 2 antigens representing a single virulence factor by an immune correlate, and uniquely demonstrates that such a vaccine prov...
Clinical and Vaccine Immunology
MenB-FHbp is a meningococcal serogroup B vaccine with two factor H binding protein (FHbp) antigens from subfamilies A and B. For licensure, efficacy was inferred from serum bactericidal antibody (SBA) responses to four reference strains. Only limited information is available on the breadth or duration of protective SBA responses to genetically diverse disease-causing strains. Seventeen health care or laboratory workers were immunized with two ( n = 2) or three ( n = 15) doses of MenB-FHbp at 0, 2, and 6 months. SBA levels were measured against 14 serogroup B case isolates, including 6 from U.S. college outbreaks and 2 from Quebec during hyperendemic disease. Compared with preimmunization titers, the proportion of subjects with ≥4-fold increases in SBA titer 1 month after 2 doses of vaccine ranged from 35% to 94% for six isolates with FHbp subfamily A and from 24% to 76% for eight isolates with subfamily B FHbp. The respective proportions with ≥4-fold titer increases at 1 month after...
Clinical and Vaccine Immunology, 2010
Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)-outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.
Clinical and Vaccine Immunology, 2016
MenB-4C is a meningococcal vaccine for the prevention of serogroup B disease. The vaccine contains factor H binding protein (FHbp) and three other antigens that can elicit serum bactericidal antibodies (SBA). For vaccine licensure, efficacy was inferred from the SBA responses against three antigen-specific indicator strains. The relation between those results and broad protection against circulating genetically diverse strains is not known. Twenty adults were immunized with two doses of MenB-4C given 1 to 2 months apart. SBA activity against 3 reference strains and 15 serogroup B test strains (6 from college outbreaks) was measured. Compared to the preimmunization titers, 70%, 95%, and 95% of subjects had ≥4-fold increases in the titers of anti-PorA P1.4, anti-NadA, and anti-FHbp antibodies against the reference strains, respectively. In contrast, only 25 to 45% of the subjects had ≥4-fold increases in responses to 10 of the 15 test strains, including 8 that expressed one to three o...
Journal of clinical microbiology, 2006
During periods of endemic meningococcal disease, serogroup B Neisseria meningitidis is responsible for a significant percentage of invasive diseases, and no particular clone or strain predominates (F. E. Ashton and D. A. Caugant, Can. J. Microbiol. 47: 293-289, 2001), However, in the winter of 2004 to 2005, a cluster of serogroup B meningococcal disease occurred in one region in the province of Québec, Canada. The N. meningitidis strain responsible for this cluster of cases was identified as sequence type ST-269 with the antigenic formula B:17:P1.19. Retrospective analysis of isolates from 2000 onwards showed that this clone first emerged in the province of Québec in 2003. The emergence of this clone of serogroup B meningococci occurred after a mass vaccination against serogroup C N. meningitidis, suggesting possible capsule replacement.
BMC Microbiology, 2015
Background: The epidemiology of invasive meningococcal disease (IMD) in Québec, Canada, has been dominated in the past decade by a clone of serogroup B (MenB) Neisseria meningitidis defined by multi-locus sequence typing (MLST) as sequence type (ST)-269. With the licensure of a new MenB vaccine Bexsero (4CMenB) in Canada, this study characterized invasive N. meningitidis recovered in Québec from 2009 to 2013, with an objective to examine the diversity of the 4CMenB vaccine antigens. Isolates were serogrouped by antisera and genogrouped by PCR, and further typed by whole cell ELISA for serotype and serosubtype antigens. Clonal analysis was done by MLST. Isolates were genotyped by analysis of their 4CMenB vaccine antigen genes of PorA, factor H binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA), and Neisseria Adhesin A (NadA). Results: Of the 263 IMD isolates analysed, 229, 16, 10, 7, and 1 belonged to MenB, MenY, MenW, MenC, and MenX, respectively. Of the 229 MenB, 159 (69.4 %) were typed as ST-269 clonal complex (CC); and they possessed a restricted number of three fHbp and five nhba gene alleles. Nine N. meningitidis isolates (eight MenB and one MenY) were found to possess at least one gene that encoded for an antigen that matched exactly with protein variants in the 4CMenB vaccine. Two MenB expressed PorA antigen P1.4 and possessed the nhba gene for peptide 2; four other MenB were predicted to have NHBA peptide 2; another two MenB were predicted to encode fHbp peptide 1.1; and a single MenY was found to have nadA gene for NadA peptide 8. In addition, another 172 isolates were found to possess genes for variant 1 fHbp peptides other than peptide 1.1 or NadA variant 1-2/3 peptides other than peptide 8; and therefore, may potentially be covered by 4CMenB.
Alternative vaccine strategies to prevent serogroup B meningococcal diseases
Vaccine, 2001
Ideally, a Neisseria meningitidis serogroup B (menB) vaccine should: (i) be safe and immuno-genic in the pediatric population; (ii) elicit protection against a wide range of clinical strains; and (iii) be cost-effective and easy to manufacture at large scale. In this context, we are actively pursuing the development of a multi-component, protein-based vaccine that could possibly protect against all menB strains. Our rationale was to select for conserved, surface accessible, menB antigens able to induce a cross-protective immune response. Moreover, and in order to limit the appearance of vaccine escape mutants, our research was oriented towards a vaccine able to interfere with several aspects of the meningococcal infectious process. To meet with these objectives and identify conserved menB vaccine candidate antigens, we performed in sillico mining of the menB genome in combination with recombinant expression and pre-clinical testing of the vaccine candidate antigens. For that purpose, menB proteins were produced either as subunit antigens in E. coli (heterologous) or via gene up-regulation in the menB chromosome and recovery of recombinant outer-membrane vesicles. Vaccine potential of these subunit and OMVs antigens was then evaluated using various in vitro and in vivo pre-clinical tests.
mSphere
Neisseria meningitidis is the most common cause of bacterial meningitis in children and young adults worldwide. A 4-component vaccine against N. meningitidis serogroup B (MenB) disease (MenB-4C [Bexsero]; GSK) combining factor H binding protein (fHBP), neisserial heparin binding protein (NHBA), neisserial adhesin A (NadA), and PorA-containing outer membrane vesicles was recently approved for use in the United States and other countries worldwide. Because the public health impact of MenB-4C in the United States is unclear, we used the meningococcal antigen typing system (MATS) to assess the strain coverage in a panel of strains representative of serogroup B (NmB) disease in the United States. MATS data correlate with killing in the human complement serum bactericidal assay (hSBA) and predict the susceptibility of NmB strains to killing in the hSBA, the accepted correlate of protection for MenB-4C vaccine. A panel of 442 NmB United States clinical isolates (collected in 2000 to 2008) ...