Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state (original) (raw)

Single-cell sequencing of the human midbrain reveals glial activation and a neuronal state specific to Parkinson’s disease

2020

Parkinson’s disease (PD) etiology is associated with genetic and environmental factors that lead to a loss of dopaminergic neurons. However, the functional interpretation of PD-associated risk variants and how other midbrain cells contribute to this neurodegenerative process are poorly understood. Here, we profiled >41,000 single-nuclei transcriptomes of postmortem midbrain tissue from 6 idiopathic PD (IPD) patients and 5 matched controls. We show that PD-risk variants are associated with glia- and neuron-specific gene expression patterns. Furthermore, Microglia and astrocytes presented IPD-specific cell proliferation and dysregulation of genes related to unfolded protein response and cytokine signalling. IPD-microglia revealed a specific pro-inflammatory trajectory. Finally, we discovered a neuronal cell cluster exclusively present in IPD midbrains characterized by CADPS2 overexpression and a high proportion of cycling cells. We conclude that elevated CADPS2 expression is specif...

Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease

The American Journal of Human Genetics

Genetic variation modulating risk of sporadic Parkinson's disease (PD) has been primarily explored through genome wide association studies (GWAS). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNAseq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal timepoints. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1 null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research.

Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease

Nature Genetics, 2020

Genome-wide association studies have discovered hundreds of loci associated with complex brain disorders, but it remains unclear in which cell types these loci are active. Here we integrate genome-wide association study results with single-cell transcriptomic data from the entire mouse nervous system to systematically identify cell types underlying brain complex traits. We show that psychiatric disorders are predominantly associated with projecting excitatory and inhibitory neurons. Neurological diseases were associated with different cell types, which is consistent with other lines of evidence. Notably, Parkinson's disease was genetically associated not only with cholinergic and monoaminergic neurons (which include dopaminergic neurons) but also with enteric neurons and oligodendrocytes. Using post-mortem brain transcriptomic data, we confirmed alterations in these cells, even at the earliest stages of disease progression. Our study provides an important framework for understanding the cellular basis of complex brain maladies, and reveals an unexpected role of oligodendrocytes in Parkinson's disease.

Single-cell RNA-seq of mouse dopaminergic neurons informs candidate gene selection for sporadic Parkinson’s disease

ABSTRACTGenetic variation modulating risk of sporadic Parkinson’s disease (PD) has been primarily explored through genome wide association studies (GWAS). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal timepoints. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a novel postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including known PD genes and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1 null mice. Ultimately, this systematic approach establishes biologically pertinent ...

Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease

The molecular mechanisms underlying the caudal-to-rostral progression of Lewy body pathology in Parkinson’s disease (PD) remain poorly understood. Here, we aimed to unravel transcriptomic signatures across brain regions involved in Braak Lewy body stages in non-neurological controls and PD donors. Using human postmortem brain datasets of non-neurological adults from the Allen Human Brain Atlas, we identified expression patterns related to PD progression, including genes found in PD genome-wide associations studies: SNCA, ZNF184, BAP1, SH3GL2, ELOVL7, and SCARB2. We confirmed these patterns in two datasets of non-neurological subjects (Genotype-Tissue Expression project and UK Brain Expression Consortium) and found altered patterns in two datasets of PD patients. Additionally, co-expression analysis across vulnerable regions identified two modules associated with dopamine synthesis, the motor and immune system, blood-oxygen transport, and contained microglial and endothelial cell mar...

A human single-cell atlas of the Substantia nigra reveals novel cell-specific pathways associated with the genetic risk of Parkinson’s disease and neuropsychiatric disorders

2020

We describe a human single-nuclei transcriptomic atlas for the Substantia nigra (SN), generated by sequencing ~ 17,000 nuclei from matched cortical and SN samples. We show that the common genetic risk for Parkinson’s disease (PD) is associated with dopaminergic neuron (DaN)-specific gene expression, including mitochondrial functioning, protein folding and ubiquitination pathways. We identify a distinct cell type association between PD risk and oligodendrocyte-specific gene expression. Unlike Alzheimer’s disease (AD), we find no association between PD risk and microglia or astrocytes, suggesting that neuroinflammation plays a less causal role in PD than AD. Beyond PD, we find associations between SN DaNs and GABAergic neuron gene expression patterns with multiple neuropsychiatric disorders. Nevertheless, we find that each neuropsychiatric disorder is associated with a distinct set of genes within that neuron type. This atlas guides our aetiological understanding by associating SN cel...

Genetic Identification of Cell Types Underlying Brain Complex Traits Yields Novel Insights Into the Etiology of Parkinson’s Disease

2019

Genome-wide association studies (GWAS) have discovered hundreds of loci associated with complex brain disorders, and provide the best current insights into the etiology of these idiopathic traits. However, it remains unclear in which cell types these variants may be active, which is essential for understanding disease etiology and for disease modelling. Here we integrate GWAS results with single-cell transcriptomic data from the entire nervous system to systematically identify cell types underlying psychiatric disorders, neurological conditions, and other brain complex traits. We show that psychiatric disorders are predominantly associated with excitatory neurons from the cortex/hippocampus, medium spiny neurons from the striatum, diverse sets of midbrain neurons, and inhibitory neurons from the cortex/hippocampus. Cognitive traits were generally associated with similar cell types but their associations were driven by different genes. Neurological disorders were associated with diff...

Single-cell transcriptomic and proteomic analysis of Parkinson’s disease Brains

bioRxiv (Cold Spring Harbor Laboratory), 2022

We provide an extensive single cell analysis profiling nearly 80,000 brain nuclei from prefrontal cortex of late-stage Parkinson's disease brains, demonstrate that αsynuclein pathology is inversely correlated with chaperone expression in excitatory neurons, found a selective abatement of neuron-astrocyte interactions with enhanced neuroinflammation, and augmented the study with proteomic analysis and cross-comparisons with Alzheimer's disease datasets, providing valuable insights into the pathways of neurodegeneration and a deep definition of the underlying molecular pathology for Parkinson's disease.

A review of genome-wide transcriptomics studies in Parkinson's disease

The European journal of neuroscience, 2018

Parkinson's disease (PD) is a progressive and incurable neurodegenerative disorder. Although numerous genetic and environmental factors have been linked to the aetiology of PD the underlying pathobiology remains poorly understood, hampering the development of improved therapies. Transcriptomics has the potential to reveal significant insights into disease processes. In this review, we focused on published transcriptomics studies on PD with the aim of summarizing studies and identifying common biological pathways. A total of 96 articles were identified as follows: 12 meta-analyses, 21 re-analyses of existing data and 63 original studies. Of the 63 original studies, 33 were performed on brain tissue, 26 on blood, three on cerebrospinal fluid and one on skin. In the brain studies, altered pathways identified included those involved in dopamine metabolism, mitochondrial function, oxidative stress, protein degradation, neuroinflammation, vesicular transport and synaptic transmission....

A Cross-Study Transcriptional Analysis of Parkinson's Disease

PLoS ONE, 2009

The study of Parkinson's disease (PD), like other complex neurodegenerative disorders, is limited by access to brain tissue from patients with a confirmed diagnosis. Alternatively the study of peripheral tissues may offer some insight into the molecular basis of disease susceptibility and progression, but this approach still relies on brain tissue to benchmark relevant molecular changes against. Several studies have reported whole-genome expression profiling in post-mortem brain but reported concordance between these analyses is lacking. Here we apply a standardised pathway analysis to seven independent case-control studies, and demonstrate increased concordance between data sets. Moreover data convergence increased when the analysis was limited to the five substantia nigra (SN) data sets; this highlighted the down regulation of dopamine receptor signaling and insulin-like growth factor 1 (IGF1) signaling pathways. We also show that case-control comparisons of affected post mortem brain tissue are more likely to reflect terminal cytoarchitectural differences rather than primary pathogenic mechanisms. The implementation of a correction factor for dopaminergic neuronal loss predictably resulted in the loss of significance of the dopamine signaling pathway while axon guidance pathways increased in significance. Interestingly the IGF1 signaling pathway was also over-represented when data from non-SN areas, unaffected or only terminally affected in PD, were considered. Our findings suggest that there is greater concordance in PD wholegenome expression profiling when standardised pathway membership rather than ranked gene list is used for comparison.