Neuronal differentiation through GPI-anchor cleavage by GDE2: regulation via sequence-dependent trafficking (original) (raw)

Sequence-dependent trafficking and activity of GDE2, a GPI-specific phospholipase promoting neuronal differentiation

Journal of Cell Science

GDE2 (GDPD5) is a multispanning membrane phosphodiesterase with phospholipase D-like activity that cleaves select glycosylphosphatidylinositol (GPI)-anchored proteins and thereby promotes neuronal differentiation both in vitro and in vivo. GDE2 is a prognostic marker in neuroblastoma, while loss of GDE2 leads to progressive neurodegeneration in mice; however, its regulation remains unclear. Here we report that in immature neuronal cells, GDE2 undergoes constitutive endocytosis and travels back along both fast and slow recycling routes. GDE2 trafficking is directed by C-terminal tail sequences that determine GDE2's ability to cleave GPI-anchored glypican-6 (GPC6) and induce a neuronal differentiation program. Specifically, we define a GDE2 truncation mutant that shows aberrant recycling and is dysfunctional, whereas a consecutive deletion results in cell-surface retention and gain of GDE2 function, thus uncovering distinctive regulatory sequences. Moreover, we identify a C-termin...

GDE2 Promotes Neurogenesis by Glycosylphosphatidylinositol-Anchor Cleavage of RECK

Science, 2013

The six-transmembrane protein glycerophosphodiester phosphodiesterase 2 (GDE2) induces spinal motor neuron differentiation by inhibiting Notch signaling in adjacent motor neuron progenitors. GDE2 function requires activity of its extracellular domain that shares homology with glycerophosphodiester phosphodiesterases (GDPD). GDPDs metabolize glycerophosphodiesters into glycerol-3-phosphate and corresponding alcohols but whether GDE2 inhibits Notch signaling by this mechanism is unclear. Here, we show that GDE2, unlike classical GDPDs, cleaves glycosylphosphatidylinositol (GPI)-anchors. GDE2 GDPD activity inactivates the Notch activator RECK by releasing it from the membrane by GPI-anchor cleavage. RECK release disinhibits ADAM protease-dependent shedding of the Notch ligand Delta-like 1 (Dll1) leading to Notch inactivation. This study identifies a previously unrecognized mechanism to initiate neurogenesis that involves GDE2 mediated surface cleavage of GPI-anchored targets to inhibit Dll1-Notch signaling.

Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome

Cancer cell, 2016

Neuroblastoma is a pediatric embryonal malignancy characterized by impaired neuronal differentiation. A better understanding of neuroblastoma differentiation is essential for developing new therapeutic approaches. GDE2 (encoded by GDPD5) is a six-transmembrane-domain glycerophosphodiesterase that promotes embryonic neurogenesis. We find that high GDPD5 expression is strongly associated with favorable outcome in neuroblastoma. GDE2 induces differentiation of neuroblastoma cells, suppresses cell motility, and opposes RhoA-driven neurite retraction. GDE2 alters the Rac-RhoA activity balance and the expression of multiple differentiation-associated genes. Mechanistically, GDE2 acts by cleaving (in cis) and releasing glycosylphosphatidylinositol-anchored glypican-6, a putative co-receptor. A single point mutation in the ectodomain abolishes GDE2 function. Our results reveal GDE2 as a cell-autonomous inducer of neuroblastoma differentiation with prognostic significance and potential thera...

GDE6 promotes progenitor identity in the vertebrate neural tube

Frontiers in Neuroscience

The generation of neurons in the central nervous system is a complex, stepwise process necessitating the coordinated activity of mitotic progenitors known as radial glia. Following neural tube closure, radial glia undergo a period of active proliferation to rapidly expand their population, creating a densely packed neurepithelium. Simultaneously, radial glia positioned across the neural tube are uniquely specified to produce diverse neuronal sub-types. Although these cellular dynamics are well studied, the molecular mechanisms governing them are poorly understood. The six-transmembrane Glycerophosphodiester Phosphodiesterase proteins (GDE2, GDE3, and GDE6) comprise a family of cell-surface enzymes expressed in the embryonic nervous system. GDE proteins can release Glycosylphosphatidylinositol-anchored proteins from the cell surface via cleavage of their lipid anchor. GDE2 has established roles in motor neuron differentiation and oligodendrocyte maturation, and GDE3 regulates oligode...

The distribution and function of GDE2, a regulator of spinal motor neuron survival, are disrupted in Amyotrophic Lateral Sclerosis

Acta Neuropathologica Communications

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the viability of upper and lower motor neurons. Current options for treatment are limited, necessitating deeper understanding of the mechanisms underlying ALS pathogenesis. Glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) is a six-transmembrane protein that acts on the cell surface to cleave the glycosylphosphatidylinositol (GPI)-anchor that tethers some proteins to the membrane. GDE2 is required for the survival of spinal motor neurons but whether GDE2 neuroprotective activity is disrupted in ALS is not known. We utilized a combination of mouse models and patient post-mortem samples to evaluate GDE2 functionality in ALS. Haplogenetic reduction of GDE2 exacerbated motor neuron degeneration and loss in SOD1G93A mice but not in control SOD1WT transgenic animals, indicating that GDE2 neuroprotective function is diminished in the context of SOD1G93A. In tissue samples from patients with ALS, t...

University of Groningen Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome Matas-Rico

2019

Citation for published version (APA): Matas-Rico, E., van Veen, M., Leyton-Puig, D., van den Berg, J., Koster, J., Kedziora, K. M., Molenaar, B., Weerts, M. J. A., de Rink, I., Medema, R. H., Giepmans, B. N. G., Perrakis, A., Jalink, K., Versteeg, R., & Moolenaar, W. H. (2016). Glycerophosphodiesterase GDE2 Promotes Neuroblastoma Differentiation through Glypican Release and Is a Marker of Clinical Outcome. Cancer cell, 30(4), 548-562. https://doi.org/10.1016/j.ccell.2016.08.016

Secretome analysis to elucidate metalloprotease-dependent ectodomain shedding of glycoproteins during neuronal differentiation

Genes to Cells, 2017

Many membrane proteins are subjected to limited proteolyses at their juxtamembrane regions, processes referred to as ectodomain shedding. Shedding ectodomains of membrane-bound ligands results in activation of downstream signaling pathways, whereas shedding those of cell adhesion molecules causes loss of cell-cell contacts. Secreted proteomics (secretomics) using high-resolution mass spectrometry would be strong tools for both comprehensive identification and quantitative measurement of membrane proteins that undergo ectodomain shedding. In this study, to elucidate the ectodomain shedding events that occur during neuronal differentiation, we establish a strategy for quantitative secretomics of glycoproteins released from differentiating neuroblastoma cells into culture medium with or without GM6001, a broadspectrum metalloprotease inhibitor. Considering that most of transmembrane and secreted proteins are N-glycosylated, we include a process of N-glycosylated peptides enrichment as well as isotope tagging in our secretomics workflow. Our results show that differentiating N1E-115 neurons secrete numerous glycosylated polypeptides in metalloprotease-dependent manners. They are derived from cell adhesion molecules such as NCAM1, CADM1, L1CAM, various transporters and receptor proteins. These results show the landscape of ectodomain shedding and other secretory events in differentiating neurons and/or during axon elongation, which should help elucidate the mechanism of neurogenesis and the pathogenesis of neurological disorders.