Effective coastal boundary conditions for tsunami simulations (original) (raw)
Abstract
This dissertation has been approved by: prof. dr. ir. E. W. C. van Groesen prof. dr. ir. O. Bokhove this thesis is dedicated to my mother and the memory of my father to my husband Contents Summary ix Samenvatting xi xii CONTENTS water en in tweede instantie niet-lineaire vergelijkingen voor ondiep water. De lineaire benadering wordt gestart met het eenvoudigste geval, dat is een vlakke bathymetrie met een vaste wand als randvoorwaarde. Verder is een langzaam variërende bathymetrie beschouwd. De analytische oplossing is gebaseerd op lineaire ondiep water theorie en de Wentzel-Kramer-Brillouin benadering, evenals uitbreidingen voor het dispersieve Boussinesq model. Vervolgens worden in de lineaire benadering de waterdiepten aan de kust benaderd door een strand met een constante gemiddelde helling. De oploophoogten aan de kust en de reflectie veroorzaakt door de helling worden vervolgens gemodelleerd op basis van nietlineaire ondiep water theorie over hellende bathymetrie. De koppeling tussen de numerieke en analytische dynamiek in de twee gebieden wordt behandeld met behulp variatieprincipes, wat bij benadering leidt tot behoud van de totale energie in beide gebieden. De numerieke oplossing in het simulatiegebied is gebaseerd op een variationele eindige elementenmethode. Verificaties van de effectieve randvoorwaarde techniek en implementatie worden gedaan in een reeks van numerieke testcases van toenemende complexiteit, waaronder een geval verwant aan tsunami-oploop naar de kustlijn op Atjeh, Sumatra, Indonesie. Bij vergelijking blijkt dat de effectieve randvoorwaarde methode een goede voorspelling geeft van zowel de golf die aankomt bij de kustlijn alsmede van de golfreflectie, terwijl deze methode uitsluitend is gebaseerd op de informatie van het golfsignaal bij dit zeewaartse grenspunt. De rekentijden die nodig zijn in simulaties met behulp van de effectieve randvoorwaarde tonen een reductie ten opzichte van tijden die nodig zijn voor overeenkomstige volledige numerieke simulaties. CHAPTER 1 Introduction 1.1 Motivation The word tsunami is a Japanese word, represented by two characters: tsu, meaning, harbor, and nami, meaning, wave. Tsunami is defined as a set of ocean waves with very long wavelengths (typically hundreds of kilometres) and relatively small amplitude (a metre or so is typical), so that it often passes by ships in the deep ocean without anyone on board even noticing. The cause of a tsunami is any large, sudden disturbance of the sea-surface, such as an underwater earthquake, landslide, or volcanic eruption. More rarely, a tsunami can be generated by a giant meteor impact with the ocean. About 80 percent of tsunamis happen within the Pacific Ocean's "Ring of Fire", which is an active geological area where tectonic shifts make volcanoes and earthquakes common. Historical data of tsunamis record that since 1850 tsunamis have killed more than 420,000 people and caused billions of dollars of damage to coastal structures and habitats [Bernard and Robinson, 2009]. Knowing no international boundaries across the sea, tsunami propagation is a problem with global dimensions and ranks high on the scale of natural disasters. Most of the casualties were caused by local tsunamis that occur about once per year somewhere in the world. The December 26, 2004 Indian Ocean Tsunami (IOT) with a Moment magnitude (Mw) of 9.2 was likely the most devastating tsunami in recorded history, causing over 200,000 fatalities within a few hours in 27 countries across the entire Indian Ocean basin, with tens of thousands reported missing and over one million left homeless [
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (76)
- M. Antuono. A shock solution for the nonlinear shallow water equations. J. Fluid Mech, 658:167-187, 2010.
- M. Antuono. Shock trains on a planar beach. J. Fluid Mech, 686:583-606, 2011.
- M. Antuono and M. Brocchini. The boundary value problem for the nonlinear shallow water equations. Studies in Applied Mathematics, 119:73-93, 2007.
- M. Antuono and M. Brocchini. Solving the nonlinear shallow-water equations in physical space. J. Fluid Mech, 643:207-232, 2010.
- E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. of Sci. Comp., 25(6):2050-2065, 2004.
- C. Bender and S. Orszag. Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, USA, 1978.
- E. N. Bernard and A. R. Robinson. Introduction: Emergent Finnings and New Directions in Tsunami Science. In E. N. Bernard and A. R. Robinson, editors, The Sea, Volume 15: Tsunamis, pages 1-22. Harvard University Press, 2009.
- O. Bokhove. Flooding and Drying in Discontinuous Galerkin Finite-Element Discretizations of Shallow-Water Equations. Part 1: One Dimension. J. Sci. Comp., 22:47-82, 2005.
- H. Bremmer. The WKB approximation as the first term of a geometrical-optical series. The Theory of Electromagnetic Waves, A Symposium, pages 169-179, 1951.
- M. Brocchini and D. H. Peregrine. Integral flow properties of the swash zone and averaging. J. Fluid Mech, 317:241-273, 1996.
- G. F. Carrier and H. P. Greenspan. Water waves of finite amplitude on a sloping beach. J. Fluid Mech, 4:97-109, 1958.
- G. F. Carrier, T. T. Wu, and H. Yeh. Tsunami runup and drawdown on a plane beach. J. Fluid Mech, 475:79-99, 2003.
- B. H. Choi, V. Kaistrenko, K. O. Kim, B. I. Min, and E. Pelinovsky. Rapid forecasting of tsunami runup heights from 2-D numerical simulations. Nat. Hazards Earth Syst. Sci., 11:707-714, 2011.
- B. H. Choi, E. Pelinovsky, K. O. Kim, and B. I. Min. Estimation of Runup Heights of the 2011 off the Pacific Coast of Tohoku Earthquake Tsunami Based on Numerical Simulations. The Open Oceanography J., 6:5-13, 2012.
- C. Cotter and O. Bokhove. Water wave model with accurate dispersion and vertical vorticity. Peregrine Commemorative Issue J. Eng. Maths., 67:33-54, 2010.
- I. Didenkulova and E. Pelinovsky. Run-up of long waves on a beach: the influence of the incident wave form. Oceanology, 48:1-6, 2008.
- A. Ezersky, D. Tiguercha, and E. Pelinovsky. Resonance phenomena at the long wave runup on the coast. Nat. Hazard Earth Sys., 13:2745-2752, 2013.
- E. Gagarina, J. J. W. van der Vegt, and O. Bokhove. Horizontal circulation and jumps in Hamiltonian wave models. Nonlinear. Proc. Geoph., 20:483-500, 2013.
- A. E. Gill. Atmosphere-Ocean Dynamics. Academic Press, 1982.
- S. T. Grilli, M. Ioualalen, J. Asavanant, and F. Shi. Source Cconstraints and Model Simmolation of the December 26, 2004, Indian Ocean Tsunami. J. Waterw. Port C-ASCE, 133:414-428, 2007.
- A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov- type schemes for hyperbolic conservation laws. SIAM Review, 25:35-61, 1983.
- P. Heinrich, F. Schindele, S. Guiborg, and P. F. Ihmle. Modeling of the February 1996 Peruvian tsunami. Geophys. Res. Lett., 25(14):2687-2690, 1998.
- E. J. Hinch. Perturbation Methods. Cambridge University Press, 1991. J. Horrillo, Z. Kowalik, and Y. Shigihara. Wave Dispersion Study in the Indian Ocean-Tsunami of December 26, 2004. Mar. Geod., 29(3):149-166, 2006.
- J. Horrillo, W. Knight, and Z. Kowalik. Tsunami propagation over the North Pacidic: dispersive and nondispersive models. Sci. Of Tsunami Hazards, 31 (3):154-177, 2012.
- F. Imamura, A. C. Yalciner, and G. Ozyurt. Tsunami Modeling Manual (TU- NAMI Model). 2006.
- U. Kânoglu. Nonlinear evolution and runup and rundown of long waves over a sloping beach. J. Fluid Mech., 513:363-372, 2004.
- U. Kânoglu and C. E. Synolakis. Long wave runup on a piecewise linear topogra- phies. J. Fluid Mech., 374:1-28, 1998.
- Y. Kawata, Y. Tsuji, Y. Sugimoto, H. Hayashi, H. Matsutomi, Y. Okamura, I. Hayashi, H. Kayane, Y. Tanioka, K. Fujima, F. Imamura, M. Matsuyama, T. Takahashi, N. Maki, and S. Koshimura. Comprehensive analysis of the damage and its impact on coastal zones by the 2004 Indian Ocean tsunami dis- aster. 2005. URL http://www.tsunami.civil.tohoku.ac.jp/sumatra2004/ report.html.
- A. B. Kennedy and J. T. Kirby. An unsteady wave driver for narrow-banded waves: Modeling nearshore circulation driven by wave groups. Coastal Eng., 48(4):257-275, 2003.
- G. Kim, C. Lee, and K. D. Suh. Internal generation of waves: Delta source function method and source term addition method. Ocean Engineering, 34: 2251-2264, 2007.
- J. T. Kirby. Nonlinear, dispersive long waves in water of variable depth. In J. N. Hunt, editor, Gravity Waves in Water of Finite Depth, pages 55-125. Computational Mechanics Publications, 1997.
- F. Klaver. Coupling of numerical models for deep and shallow water. Master's thesis, University of Twente, The Netherlands, 2009.
- G. Klopman, M. W. Dingemans, and E. van Groesen. A variational model for fully non-linear water waves of Boussinesq type. Proc. 20 th Int. Workshop on Water Waves and Floating Bodies, Longyearbyen, Spitsbergen, Norway, 2005.
- G. Klopman, E. van Groesen, and M. Dingemans. A variational approach to Boussinesq modelling of fully non-linear water waves. J. Fluid Mech., 657: 36-63, 2010.
- W. Kristina, E. Van Groesen, and O. Bokhove. Effective coastal boundary condi- tions for dispersive tsunami propagation. Internal report, University of Twente, 2012. URL http://eprints.eemcs.utwente.nl/21961/.
- E. Kulikov. Dispersion of the Sumatra Tsunami waves in the Indian Ocean detected by satellite altimetry. Russian J. of Earth Sci., 8,ES4004, 2006.
- C. Lee, Y-S. Cho, and K. Yum. Internal generation of waves for extended Bous- sinesq equations. Coastal Eng., 42:155-162, 2001.
- Y. Li and F. Raichlen. Solitary wave runup on plane slopes. J. of Waterway, Port, Coastal, and Oc. Eng., 127:33-44, 2001.
- S. L. Lie, D. Adytia, and E. van Groesen. Embedded wave generation for disper- sive surface wave models. Ocean Engineering, 80:73-83, 2014.
- P. L. F. Liu, Y. B. Cho, S. B. Yoon, and S. N. Seo. Numerical simulation of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. In Y. Tsuchiya and N. Shuto, editors, Tsunami progress in prediction, disaster prevention and warning, pages 99-115. Kluwer Academic Publisher, 1995.
- Y. Liu, Y. Shi, D. A. Yuen, E. O. D. Sevre, X. Yuan, and H. L. Xing. Comparison of linear and nonlinear shallow wave water equations applied to tsunami waves over the china sea. Acta Geotechnica, 4:129-137, 2009.
- J. C. Luke. A variational principle for fluid with a free surface. J. Fluid Mech., 27:395-397, 1967.
- C. L. Mader. Numerical simulation of tsunamis. J. Phys. Oceanogr., 4:74-82, 1974.
- C. L. Mader. Numerical Modeling of Water Waves. CRC Press, 2004.
- P. A. Madsen and H. A. Schäffer. Analytical solutions for tsunami runup on a plane beach: single waves, N-waves and transient waves. J. Fluid Mech, 645: 27-57, 2010.
- P. A. Madsen, R. Murray, and O. R. Sørensen. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 1. Coast. Eng., 15:371-388, 1991.
- C. C. Mei. The applied dynamics of ocean surface waves. World Scientific Pub- lishing Singapore, 1989.
- C. Meinig, S. E. Stalin, A. I. Nakamura, F. Gonzalez, and H. G. Milburn. Technol- ogy developments in real-time tsunami measuring, monitoring and forecasting in oceans. MTS/IEEE, 19-23 September 2005, Washington D. C., 2005.
- J. W. Miles. On Hamiltonian's principle for surface waves. J. Fluid Mech., 83: 153-158, 1977.
- S. Neetu, I. Suresh, R. Shankar, B. Nagarajan, R. Sharma, S. S. C. Shenoi, A. S. Unnikrishnan, and D. Sundar. Trapped waves of the 27 november 1945 Makran tsunami: observations and numerical modeling. Nat. Hazards, 59, 2011.
- M. Ortiz, E. Gomez-Reyes, and H. S. Velez-Munoz. A fast preliminary estimation model for transoceanic tsunami propagation. ITS 2001 Proceedings, pages 723- 739, 2001.
- E. J. O'Sullivan. Wave reflection effects within a harbour. Master's thesis, The University of British Columbia, Canada, 1992.
- E. N. Pelinovsky and R. KH. Mazova. Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles. Nat. Haz- ards, 6:227-249, 1992.
- D. H. Peregrine. Long waves on a beach. J. Fluid Mech., 27(4):815-827, 1967.
- L. Pinheiro, C. J. Fortes, J. A. Santos, and M. Walkley. Implementation of partial reflection boundary conditions in wave propagation model boussiiw. J. Coastal Res., SI 56:1040-1044, 2009.
- J. Roger, S. Allgeyer, H. Hebert, M. A. Baptista, A. Loevenbruck, and F. Schin- dele. The 1755 Lis bon tsunami in Guadeloupe Aarchipelago: source sensitivity and investigation of resonance effects. Open Oceanography J., 4:58-70, 2010.
- S. C. Ryrie. Longshore motion generated on beaches by obliquely incident bores. J. Fluid Mech., 129:193-212, 1983.
- T. Saito, Y. Ito, D. Inazu, and R. Hino. Tsunami source of the 2011 Tohoku?Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations. J. Geoph. Res., 38,L00G19, 2011.
- S. Sato. Numerical Simulation of 1993 Southwest Hokkaido Earthquake Tsunami around Okushiri Island. J. Waterway, Port, Coastal, Ocean Eng., 122(5):209- 215, 1996.
- F. Shi, J.T. Kirby, B. Tehranirad, J.C. Harris, and S. Grilli. FUNWAVE TVD: Fully Nonlinear Boussinesq Wave Model with TVD Solver Documentation and Users' Manual (Version 1.0). Research Report NO. CACR-11-04, Center for Applied Coastal Research, Ocean Engineering Laboratory, University of Delaware, Newark, 2011.
- T. S. Stefanakis, F. Dias, and D. Dutykh. Local run-up amplification by resonant wave interactions. Phys. Rev. Lett., 107:124502, 2011.
- C. E. Synolakis. The runup of solitary waves. J. Fluid Mech., 185:523-545, 1987.
- C. E. Synolakis and E. N. Bernard. Tsunami science before and after Boxing Day 2004. Phil. Trans. R. Soc. A, 364(1845):2231-2265, 2006.
- C. E. Synolakis, E. N. Bernard, V. V. Titov, U. Kânoglu, and F. I. Gonzáles. Val- idation and Vreification of Tsunami Numerical Models. Pure Appl. Geophys., 165:2197-2228, 2008.
- V. V. Titov, C. W. Moore, D. J. M. Greenslade, C. Pattiaratchi, R. Badal, C. E. Synolakis, and U. Kânoglu. A new tool for inundation modeling: Commu- nity modeling interface for tsunamis (commit). Pure Appl. Geophys., Topical Volume, 2011.
- E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4:25-34, 1994.
- E. van Groesen. Variational Boussinesq Model, part 1: Basic equations in Carte- sian coordinates. Technical Report of LabMath-Indonesia, 2006.
- E. van Groesen and Andonowati. Fully dispersive dynamic models for surface water waves above varying bottom, Part 1: Model equations. Wave Motion, 48:657-666, 2011.
- E. van Groesen and Jaap Molenaar. Continuum Modelling in the Physical Sci- ences, in: Mathematical Modeling and Computation. SIAM, 2007.
- X. Wang and P. L. F. Liu. Preliminary study of possible tsunami hazards in Taiwan region. Cornell University, 2006.
- Y. Wei, E. N. Bernard, L. Tang, R. Weiss, V. V. Titov, C. Moore, M. Spillane, M. Hopkins, and U. Kânoglu. Real-time experimental forecast of the Peruvian tsunami of August 2007 for U.S. coastlines. Geophys. Res. Lett., 35:L04609, 2008.
- G. B. Whitham. Variational methods and applications to water waves. Proc. R. Soc. London A, 299(1456):6-25, 1997.
- A. C. Yalciner, E. N. Pelinovsky, U. Kuran, T. Taymaz, A. Zaitsev, G. Ozyurt, C. Ozer, H. Karakus, and I. Safak. Simulation and Comparison with Field Survey Results of Dec., 26, 2004 Tsunami. 2005. URL http://yalciner.ce. metu.edu.tr/sumatra/survey/simulation/index.htm.
- N. Zaibo, E. Pelinovsky, A. Kurkin, and A. Kozelkov. Estimation of far-field tsunami potential for the Caribbean coast based on numerical simulation. Sci. of Tsunami Hazards, 21(4):202-222, 2003.
- V. E. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. and Techn. Phys., 9(2):190-194, 1968.
- H. Zhang, Y. Shi, D. A. Yuen, Z. Yan, X. Yuan, and C. Zhang. Modeling and Visualization of Tsunamis. Pure Appl. Geophys., 165:475-496, 2008.