Gluing compactly generated t-structures over stalks of affine schemes (original) (raw)

We show that compactly generated t-structures in the derived category of a commutative ring R are in a bijection with certain families of compactly generated t-structures over the local rings Rm where m runs through the maximal ideals in the Zariski spectrum Spec(R). The families are precisely those satisfying a gluing condition for the associated sequence of Thomason subsets of Spec(R). As one application, we show that the compact generation of a homotopically smashing t-structure can be checked locally over localizations at maximal ideals. In combination with a result due to Balmer and Favi, we conclude that the ⊗-Telescope Conjecture for a quasi-coherent and quasi-separated scheme is a stalk-local property. Furthermore, we generalize the results of Trlifaj and Şahinkaya and establish an explicit bijection between cosilting objects of cofinite type over R and compatible families of cosilting objects of cofinite type over all localizations Rm at maximal primes.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.