Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra (original) (raw)
Related papers
Preference Elicitation with Uncertainty: Extending Regret Based Methods with Belief Functions
Scalable Uncertainty Management, 2019
Preference elicitation is a key element of any multi-criteria decision analysis (MCDA) problem, and more generally of individual user preference learning. Existing efficient elicitation procedures in the literature mostly use either robust or Bayesian approaches. In this paper, we are interested in extending the former ones by allowing the user to express uncertainty in addition of her preferential information and by modelling it through belief functions. We show that doing this, we preserve the strong guarantees of robust approaches, while overcoming some of their drawbacks. In particular, our approach allows the user to contradict herself, therefore allowing us to detect inconsistencies or ill-chosen model, something that is impossible with more classical robust methods.
Robust Active Preference Elicitation
2020
We study the problem of strategically eliciting the preferences of a decision-maker through a moderate number of pairwise comparison queries with the goal of making them a high quality recommendation for a specific decision-making problem. We are particularly motivated by applications in high stakes domains, such as when choosing a policy for allocating scarce resources to satisfy basic human needs (e.g., kidneys for transplantation or housing for those experiencing homelessness) where a consequential recommendation needs to be made from the (partially) elicited preferences. We model uncertainty in the preferences as being set based and investigate two settings: a) an offline elicitation setting, where all queries are made at once, and b) an online elicitation setting, where queries are selected sequentially over time in an adaptive fashion. We propose robust optimization formulations of these problems which integrate the preference elicitation and recommendation phases with aim to ...
Possibilistic preference elicitation by minimax regret
2021
Identifying the preferences of a given user through elicitation is a central part of multi-criteria decision aid (MCDA) or preference learning tasks. Two classical ways to perform this elicitation is to use either a robust or a Bayesian approach. However, both have their shortcoming: the robust approach has strong guarantees through very strong hypotheses, but cannot integrate uncertain information. While the Bayesian approach can integrate uncertainties, but sacrifices the previous guarantees and asks for stronger model assumptions. In this paper, we propose and test a method based on possibility theory, which keeps the guarantees of the robust approach without needing its strong hypotheses. Among other things, we show that it can detect user errors as well as model misspecification.
Incremental elicitation of choquet capacities for multicriteria choice, ranking and sorting problems
Artificial Intelligence, 2017
This paper proposes incremental preference elicitation methods for multicriteria decision making with a Choquet integral. The Choquet integral is an evaluation function that performs a weighted aggregation of criterion values using a capacity function assigning a weight to any coalition of criteria, thus enabling positive and/or negative interactions among them and covering an important range of possible decision behaviors. However, the specification of the capacity involves many parameters which raises challenging questions, both in terms of elicitation burden and guarantee on the quality of the final recommendation. In this paper, we investigate the incremental elicitation of the capacity through a sequence of preference queries (questions) selected one-by-one using a minimax regret strategy so as to progressively reduce the set of possible capacities until the regret (the worst-case "loss" due to reasoning with only partially specified capacities) is low enough. We propose a new approach designed to efficiently compute minimax regret for the Choquet model and we show how this approach can be used in different settings: 1) the problem of recommending a single alternative, 2) the problem of ranking alternatives from best to worst, and 3) sorting several alternatives into ordered categories. Numerical experiments are provided to demonstrate the practical efficiency of our approach for each of these situations.
Adaptive Elicitation of Rank-Dependent Aggregation Models based on Bayesian Linear Regression
2018
We introduce a new model-based incremental choice procedure for multicriteria decision support, that interleaves the analysis of the set of alternatives and the elicitation of weighting coefficients that specify the role of criteria in rank-dependent models such as ordered weighted averages (OWA) and Choquet integrals. Starting from a prior distribution on the set of weighting parameters, we propose an adaptive elicitation approach based on the minimization of the expected regret to iteratively generate preference queries. The answers of the Decision Maker are used to revise the current distribution until a solution can be recommended with sufficient confidence. We present numerical tests showing the interest of the proposed approach.
Incremental Elicitation of Rank-Dependent Aggregation Functions based on Bayesian Linear Regression
2019
We introduce a new model-based incremental choice procedure for multicriteria decision support, that interleaves the analysis of the set of alternatives and the elicitation of weighting coefficients that specify the role of criteria in rank-dependent models such as ordered weighted averages (OWA) and Choquet integrals. Starting from a prior distribution on the set of weighting parameters, we propose an adaptive elicitation approach based on the minimization of the expected regret to iteratively generate preference queries. The answers of the Decision Maker are used to revise the current distribution until a solution can be recommended with sufficient confidence. We present numerical tests showing the interest of the proposed approach.
An Approach for Modelling Preferences of Multiple Decision Makers
2006
Modern decision making problems are discrete and multicriteria by nature, and involve several decision makers (DMs). One of the key questions in this type of problems is how the preferences of the DMs can be modelled. Usually the DMs are not sure of their preferences or will not tell them to the analyst, because they are not able to express their preferences directly. In these type of situations the decision support system should allow modelling of ignorance.
Incremental Elicitation of Choquet Capacities for Multicriteria Decision Making
This paper proposes incremental preference elicitation methods for multicriteria decision making with a Choquet integral. The Choquet integral is an evaluation function that performs a weighted aggregation of criterion values using a capacity function assigning a weight to any coalition of criteria, thus enabling positive and/or negative interactions among them and covering an important range of possible decision behaviors. However, the specification of the capacity involves many parameters which raises challenging questions, both in terms of elicitation burden and guarantee on the quality of the final recommendation. In this paper, we investigate the incremental elicitation of the capacity through a sequence of preference queries (questions) selected one-by-one using a minimax regret strategy so as to progressively reduce the set of possible capacities until the regret (the worst-case "loss" due to reasoning with only partially specified capacities) is low enough. We propose a new approach designed to efficiently compute minimax regret for the Choquet model and we show how this approach can be used in different settings: 1) the problem of recommending a single alternative, 2) the problem of ranking alternatives from best to worst, and 3) sorting several alternatives into ordered categories. Numerical experiments are provided to demonstrate the practical efficiency of our approach for each of these situations.