Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus (original) (raw)

Changes in apparent duration follow shifts in perceptual timing

Journal of Vision , 2015

It is well established that the apparent duration of moving visual objects is greater at higher as compared to slower speeds. Here we report the effects of acceleration and deceleration on the perceived duration of a drifting grating with average speed kept constant (108/s). For acceleration, increasing the speed range progressively reduced perceived duration. The magnitude of apparent duration compression was determined by speed rather than temporal frequency and was proportional to speed range (independent of standard duration) rather than acceleration. The perceived duration reduction was also proportional to the standard length. The effects of increases and decreases in speed were highly asymmetric. Reducing speed through the interval induced a moderate increase in perceived duration. These results could not be explained by changes in apparent onset or offset or differences in perceived average speed between intervals containing increasing speed and intervals containing decreasing speed. Paradoxically, for intervals combining increasing speed and decreasing speed, compression only occurred when increasing speed occurred in the second half of the interval. We show that this pattern of results in the duration domain was concomitant with changes in the reported direction of apparent motion of Gaussian blobs, embedded in intervals of increasing or decreasing speed, that could be predicted from adaptive changes in the temporal impulse response function. We detected similar changes after flicker adaptation, suggesting that the two effects might be linked through changes in the temporal tuning of visual filters.

Temporal frequency of events rather than speed dilates perceived duration of moving objects

Scientific Reports, 2015

In everyday life moving objects often follow irregular or repetitive trajectories for which distinctive events are potentially noticeable. It is known that the perceived duration of moving objects is distorted, but whether the distortion is due to the temporal frequency of the events or to the speed of the objects remains unclear. Disentangling the contribution of these factors to perceived duration distortions is ecologically relevant: if perceived duration were dependent on speed, it should contract with the distance from the observer to the moving objects. Here, we asked observers to estimate the perceived duration of an object rotating at different speeds and radii and found that perceived duration dilated with temporal frequency of rotations, rather than speed (or perceived speed, which we also measured). We also found that the dilation was larger for two than for one object, but the increase was not large enough to make perceived duration independent of the number of objects when expressed as a function of the local frequency (the number of times an object crossed a given location per time unit). These results suggest that perceived duration of natural stimuli containing distinctive events doesn't depend on the distance of the events to the observer.

A purely visual adaptation to motion can differentiate between perceptual timing and interval timing

Proceedings of the Royal Society B: Biological Sciences, 2023

It is unclear whether our brain extracts and processes time information using a single-centralized mechanism or through a network of distributed mechanisms, which are specific for modality and time range. Visual adaptation has previously been used to investigate the mechanisms underlying time perception for millisecond intervals. Here, we investigated whether a well-known duration after-effect induced by motion adaptation in the sub-second range (referred to as 'perceptual timing') also occurs in the supra-second range (called 'interval timing'), which is more accessible to cognitive control. Participants judged the relative duration of two intervals after spatially localized adaptation to drifting motion. Adaptation substantially compressed the apparent duration of a 600 ms stimulus in the adapted location, whereas it had a much weaker effect on a 1200 ms interval. Discrimination thresholds after adaptation improved slightly relative to baseline, implying that the duration effect cannot be ascribed to changes in attention or to noisier estimates. A novel computational model of duration perception can explain both these results and the bidirectional shifts of perceived duration after adaptation reported in other studies. We suggest that we can use adaptation to visual motion as a tool to investigate the mechanisms underlying time perception at different time scales.

Larger visual changes compress time: The inverted effect of asemantic visual features on interval time perception

PLOS ONE, 2022

Time perception is fluid and affected by manipulations to visual inputs. Previous literature shows that changes to low-level visual properties alter time judgments at the millisecond-level. At longer intervals, in the span of seconds and minutes, high-level cognitive effects (e.g., emotions, memories) elicited by visual inputs affect time perception, but these effects are confounded with semantic information in these inputs, and are therefore challenging to measure and control. In this work, we investigate the effect of asemantic visual properties (pure visual features devoid of emotional or semantic value) on interval time perception. Our experiments were conducted with binary and production tasks in both conventional and head-mounted displays, testing the effects of four different visual features (spatial luminance contrast, temporal frequency, field of view, and visual complexity). Our results reveal a consistent pattern: larger visual changes all shorten perceived time in interv...

Perceived duration of brief visual events is mediated by timing mechanisms at the global stages of visual processing

Royal Society open science, 2017

There is a growing body of evidence pointing to the existence of modality-specific timing mechanisms for encoding sub-second durations. For example, the duration compression effect describes how prior adaptation to a dynamic visual stimulus results in participants underestimating the duration of a sub-second test stimulus when it is presented at the adapted location. There is substantial evidence for the existence of both cortical and pre-cortical visual timing mechanisms; however, little is known about where in the processing hierarchy the cortical mechanisms are likely to be located. We carried out a series of experiments to determine whether or not timing mechanisms are to be found at the global processing level. We had participants adapt to random dot patterns that varied in their motion coherence, thus allowing us to probe the visual system at the level of motion integration. Our first experiment revealed a positive linear relationship between the motion coherence level of the ...

Opposite Distortions in Interval Timing Perception for Visual and Auditory Stimuli with Temporal Modulations

PLOS ONE, 2015

When an object is presented visually and moves or flickers, the perception of its duration tends to be overestimated. Such an overestimation is called time dilation. Perceived time can also be distorted when a stimulus is presented aurally as an auditory flutter, but the mechanisms and their relationship to visual processing remains unclear. In the present study, we measured interval timing perception while modulating the temporal characteristics of visual and auditory stimuli, and investigated whether the interval times of visually and aurally presented objects shared a common mechanism. In these experiments, participants compared the durations of flickering or fluttering stimuli to standard stimuli, which were presented continuously. Perceived durations for auditory flutters were underestimated, while perceived durations of visual flickers were overestimated. When auditory flutters and visual flickers were presented simultaneously, these distortion effects were cancelled out. When auditory flutters were presented with a constantly presented visual stimulus, the interval timing perception of the visual stimulus was affected by the auditory flutters. These results indicate that interval timing perception is governed by independent mechanisms for visual and auditory processing, and that there are some interactions between the two processing systems.

Perception of Time in Articulated Visual Events

Frontiers in Psychology, 2012

Perceived duration of a sensory event often exceeds its actual duration. This phenomenon is called time dilation. The distortion may occur because sensory systems are optimized for perception within their respective modalities and not for perception of time. We investigated how the dilation of visual events depends on the duration and content of events. Observers compared the durations of two successive visual stimuli while the luminance of one of the stimuli was modulated at different temporal frequencies.Time dilation correlated with the frequency of modulation and the duration of the stimulus: the faster the modulation and the longer the stimulus duration, the larger the dilation. Notably, time dilation was also accompanied by a decreased sensitivity to stimulus duration. We show that these results are consistent with the notion that stimulus duration is estimated using measurement intervals of the lengths that depend on stimulus frequency content. Estimation of temporal frequency content is more precise using longer measurement intervals, whereas estimation of temporal location is more precise using shorter ones. As a result, visual perception will benefit from using longer intervals when the stimulus is modulated so that its frequency content is measured more precisely. A side effect of using longer temporal intervals is a larger uncertainty about the timing of stimulus offset (temporal location), ensuing time dilation and the reduction of sensitivity to duration. Our findings support the view that time dilation follows from basic principles of measurement and from the notion that visual systems are optimized for visual perception rather than for perception of time.

Human Duration Perception Mechanisms in the Subsecond Range: Psychophysics and Electroencephalography Investigations

2018

In a world full of fleeting events, how do humans perceive time intervals as short as half a second? Unlike primary senses, there are no time receptors. Is sub-second time perception reconstructed from memory traces in the primary senses, or based on the output of a modality-independent internal clock? In analogy to bugs in computer programs or mutations in genetics studies, I studied two types of subjective time warp illusions in order to understand how time perception normally works. One illusion that I examined is called oddball chronostasis, which is a duration distortion effect that happens to an unusual item. The other illusion is called debut chronostasis, which is a time warp effect that occurs to the first item among other identical ones. Regarding oddball chronostasis, we solved a theoretical dispute over its underlying mechanisms and dissociated three causes. The necessary component is top-down attention to the target item. The other two components are contingent factors....