Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: a pilot study (original) (raw)

MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth

PLOS One, 2020

Objective To predict spontaneous preterm birth among pregnant women in an African American population using first trimester peripheral blood maternal immune cell microRNA. Study design This was a retrospective nested case-control study in pregnant patients enrolled between March 2006 and October 2016. For initial study inclusion, samples were selected that met the following criteria: 1) singleton pregnancy; 2) maternal body mass index (BMI) <30 kg/m 2 ; 3) blood sample drawn between 6 weeks to 12 weeks 6 days gestation; 4) live born neonate with no detectable birth defects. Using these entry criteria, 486 samples were selected for study inclusion. After sample quality was confirmed, 139 term deliveries (38-42 weeks) and 18 spontaneous preterm deliveries (<35 weeks) were selected for analysis. Samples were divided into training and validation sets. Real time reverse transcription quantitative poly-merase chain reaction (rt-qPCR) was performed on each sample for 45 microRNAs. Micro-RNA Risk Scores were calculated on the training set and area-under-the-curve receiver-operating-characteristic (AUC-ROC) curves were derived from the validation set. Results The AUC-ROC for the validation set delivering preterm was 0.80 (95% CI: 0.69 to 0.88; p = 0.0001), sensitivity 0.89, specificity of 0.71 and a mean gestational age of 10.0 ±1.8 weeks PLOS ONE PLOS ONE | https://doi.org/10.1371/journal.pone.

First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers

International Journal of Molecular Sciences

The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease ass...

Maternal blood EBF1-based microRNA transcripts as biomarkers for detecting risk of spontaneous preterm birth: a nested case-control study

The Journal of Maternal-Fetal & Neonatal Medicine, 2020

Objective: Both genetic variants and maternal blood mRNA levels of EBF1 gene have been linked to sPTB. Animal and human studies suggest that specific EBF1-based miRNAs are involved in various physiological and pathophysiological processes. However, to date, we did not find any reports of EBF1-based miRNAs or miRNA transcripts in relation to sPTB. We therefore aimed to examine whether maternal blood early B cell factor 1 (EBF1) gene-based microRNA (miRNA) transcripts can be used for detecting risk of spontaneous preterm birth (sPTB). Methods: We conducted a nested case-control study within a Canadian cohort consisting of 1878 singleton pregnancies enrolled from May 2008 to December 2010 in Calgary, Alberta, Canada. We used a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2-3 that included women with sPTB (n ¼ 51) and term births (n ¼ 106) matched for maternal age, race/ethnicity, pre-pregnancy body mass index, smoking during pregnancy, and parity within the Canadian cohort. Two bioinformatics tools, miRWalk and STarMirDB, with different algorithms were applied to retrieve miRNA transcripts that putatively target the EBF1 gene (i.e. EBF1-based). Limma moderated t-tests were used to examine differentially expressed (DE) miRNA transcripts (sPTB vs term) within trimesters. Logistic regression models with miRNA transcript tertiles were applied to assess threshold associations between candidate miRNA transcripts' levels and sPTB. Receiver operating characteristic (ROC) analyses were used to identify the maximum Youden Index and its corresponding optimal sensitivity/specificity cut-point of EBF1-based miRNA transcripts for classifying sPTB, and to compare the classification performance of a linear combination (score) of miRNA transcripts with that of individual miRNA transcripts. A five-fold cross-validation was applied to examine the possible overfitting problem of the final ROC model. Results: Four maternal blood EBF1-based miRNA transcripts (MIR4266, MIR1251, MIR601, MIR3612) in the 3rd trimester were significantly associated with sPTB. The odds ratios (95%CIs) for highest versus lowest tertile of the four miRNA transcripts were 3.01-5.25(1.21-13.14, p .018). The combined 4-miRNA transcripts' score significantly improved the classification of sPTB compared to individual miRNA transcripts (AUC increased from 0.65-0.69 to 0.82, p .0034) and showed a sensitivity for sPTB of 0.81 and a specificity of 0.72. The final ROC model of the EBF1-based 4 miRNA transcripts' score in cases and controls had no significant overfitting issue. Conclusions: Maternal blood EBF1-based miRNA transcripts may, along with other biomarkers, be useful in screening for sPTB risk in 3rd trimester. Our results also provide clues for further study of potential molecular mechanisms underlying the relationship between EBF1 gene and sPTB, e.g. connecting genetic variants, mRNA expression, and miRNA regulation.

Expression levels of maternal plasma microRNAs in preeclamptic pregnancies

Journal of Obstetrics and Gynaecology, 2020

The present study aimed to identify the differential expression profiles of microRNAs in the plasma between patients with preeclampsia (PE) and healthy pregnancies using quantitative real-time PCR. The expression profiles of 32 miRNAs in maternal plasma from 31 patients with PE and 32 healthy pregnancies were evaluated. The expression levels of eight miRNAs including miR-210, miR-375, miR-197-3p, miR-132-3p, miR-29a-3p, miR-328, miR-24-3p, and miR-218-5p were significantly upregulated and the expression levels of three miRNAs, including miR-302b-3p, miR-191-5p, and miR-17-5p, were significantly downregulated in patients with preeclampsia when compared to healthy pregnant women. In conclusion, we identified 11 miRNAs that may be potential biomarkers for non-invasive diagnosis and a pivotal role in the prediction of PE. Considering the small cohort of patients, further studies with larger samples from different gestational stages are necessary to confirm our findings. IMPACT STATEMENT What is already known on this subject? The alterations in the release pattern of placenta-specific miRNAs detected in maternal serum have been found to be associated with pregnancy-related complications such as preeclampsia (PE). What do the results of this study add? In the present study, the release pattern of seven miRNAs had consistency and two of them had inconsistency with previous researches. Moreover, two novel miRNAs were also defined to demonstrate the interrelationship between PE and miRNAs. What are the implications of these findings for clinical practice and/or future research? The identification of 11 miRNAs that may be potential biomarkers for non-invasive diagnosis and a pivotal role in the prediction of PE. Considering the small cohort of patients, further studies with larger samples from different gestational stages are necessary to confirm our findings.

Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept

PLoS One, 2017

Objective We investigated the capacity of first trimester peripheral blood mononuclear cell (PBMC) microRNA to determine risk of spontaneous preterm birth among pregnant women. Study design The study included 39 pregnant women with the following delivery outcomes: 25 with a full term delivery (38–42 weeks gestation) 14 with spontaneous preterm birth (<38 weeks gestation). Of the 14 women experiencing spontaneous preterm birth, 7 delivered at 34-<38 weeks gestation (late preterm) and 7 delivered at <34 weeks gestation (early preterm). Samples were collected at a mean of 7.9±3.0 weeks gestation. Quantitative rtPCR was performed on 30 selected microRNAs. MicroRNA Risk Scores were calculated and Area-Under the Curve-Receiver-Operational-Characteristic (AUC-ROC) curves derived. Results The AUC-ROC for the group delivering preterm (<38 weeks) was 0.95 (p>0.0001). The AUC-ROC for early preterm group (<34 weeks) was 0.98 (p<0.0001) and the AUC-ROC for the late preterm group (34-<38 weeks) was 0.92 (p<0.0001). Conclusion Quantification of first trimester peripheral blood PBMC MicroRNA may provide sensitive and specific prediction of spontaneous preterm birth in pregnant women. Larger studies are needed for confirmation.

First Trimester Circulating MicroRNA Biomarkers Predictive of Subsequent Preterm Delivery and Cervical Shortening

Scientific Reports

Preterm birth (PTB) is the leading cause of infant death and disability worldwide. The onset of preterm uterine contractions is preceded by asymptomatic cervical remodelling and ripening, which can be seen on trans-vaginal ultrasound as cervical shortening. This study aimed to identify plasma miRNA biomarkers that predict preterm birth and/or cervical shortening. We collected serial plasma samples from pregnant women prospectively from 12 to 22 weeks gestation. The nCounter miRNA assay was used to identify differentially expressed miRNAs associated with spontaneous PTB and/ or cervical shortening (n = 16 term no short, n = 13 preterm, n = 24 short). Predictive values of the miRNA biomarkers were confirmed in an independent validation cohort consisting of 96 women who delivered at term, 14 preterm and 21 early cervical shortening at <20 weeks gestation. Nine miRNAs (hsa-let-7a-5p, hsa-miR-374a-5p, hsa-miR-15b-5p, hsa-miR-19b-3p, hsa-miR-23a-3p, hsa-miR-93-5p, hsa-miR-150-5p, hsa-miR-185-5p and hsa-miR-191-5p) were differentially expressed (P < 0.001) in women subsequently experiencing PTB or cervical shortening. Hsa-miR-150-5p had the strongest ability to predict PTB (AUC = 0.8725) and cervical shortening (AUC = 0.8514). Plasma miRNAs in the first trimester can predict PTB and cervical shortening in women at risk of preterm delivery. This is a key period in pregnancy when early identification of PTB risk allows time to deliver outcome-modifying interventions. Preterm birth (PTB) before 37 weeks of gestation is a complex clinical syndrome with multiple aetiologies 1. It is the leading cause of mortality in children under five years-old worldwide, accounting for more than 1 million deaths per year 2. The onset of labour, both term and preterm, is diagnosed clinically by uterine contractions, but is preceded by cervical remodelling which occurs over many weeks 3. Cervical ripening is associated with an inflammatory signature, including up-regulation of prostaglandins, chemokines and cytokines, inflammatory cell infiltration and increased matrix metalloproteinase activity 4. Cervical remodelling can be observed on trans-vaginal ultrasound (TVUS) as shortening of the cervix. Shortened cervical length (CL) is a risk factor for spontaneous preterm labour (PTL) in both low-and high-risk pregnancies 5. It has been reported that ultrasound measurement of CL at 19-24 weeks detects most PTL <28 weeks and 50% of PTL <37 weeks gestation 5. This is clinically useful in populations already identified as being at high risk of PTL, since interventions (cervical cerclage or progesterone) can reduce the risk of PTB. However, CL measurements using TVUS is not routinely offered to low-risk pregnancies where 60% of all low-risk pregnancies with short cervix at 22-24 weeks deliver <28 weeks of gestation and 90% <32 weeks 6. It has been suggested that universal CL measurement should be introduced into maternity care for all women for the prediction of PTL 7,8 .

Expression profiling of maternal plasma and placenta microRNAs in preeclamptic pregnancies by microarray technology

Placenta, 2017

Preeclampsia (PE) is one of the leading causes of maternal and fetal morbidity and mortality, occurring usually in the second half of pregnancy and affecting approximately 5-8% of pregnancies in the world. miRNAs play critical role in the regulation of placental development processes. We aimed to determine specific novel miRNAs for early diagnosis of preeclampsia which is one of the most dangerous pregnancy diseases. In this study 72 samples, maternal age 22≤ and ≤36, have been analyzed; maternal plasma and placental miRNAs were isolated from 18 severe preeclampsia (sPE) patients and 18 controls, respectively. Profiling of human miRNAs (1368 probe) was performed in samples with Agilent v16 microarrays for detection of the differences in miRNA expression between two groups. The results were validated by using TaqMan RT-qPCR method. The analysis indicated that 406 of these miRNAs in all placentas and 42 of these miRNAs in all maternal plasma were expressed. The relative expression analysis has shown that 12 miRNAs (p < 0.05 and >2-fold) in maternal plasma were differentially expressed in PE and control group. However, five miRNAs were validated by qRT-PCR. Once validated miRNAs have been searched in databases for their target genes and function, it has been shown that there are some preeclampsia related pathways as a target such as angiogenesis, cardiovascular, hypertension, placental abruption and preeclampsia disorders. Differentially expressed and validated plasma miRNAs might be used as notable biomarkers for non-invasive early diagnosis of preeclampsia and treatment of disease.

A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications

International Journal of Molecular Sciences, 2021

This prospective cross-sectional case-control study investigated the postpartal gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases in the peripheral white blood cells of women with anamnesis of preterm prelabor rupture of membranes (n = 58), spontaneous preterm birth (n = 55), and term delivery (n = 89) by a quantitative reverse transcription polymerase chain reaction. After pregnancies complicated by preterm prelabor rupture of membranes or spontaneous preterm birth, mothers showed diverse expression profiles for 25 out of 29 tested microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-499a-5p, and miR-574-3p). The earliest gestational ages at delivery and the lowest birth weights of newborns were associat...