Road construction projects: an integrated and interactive visual tool for planning earthwork operations (original) (raw)

Road construction projects are expensive and highly affected by uncertainties related to factors such as weather, type of soil and other site and environmental factors. These uncertainties impact on the accuracy of predicting resource productivity and developing reliable schedules for earthwork operations. Current simulation and planning approaches and tools not only lack the capabilities of dealing with such uncertainties but they also lack the integration and intelligence to simulate multiple strategies-a model should be built every time a new scenario is required. As a result, planning decisions regarding the assignment of resources are purely based on planners experience and project plans are not the outcomes of comparing various allocation strategies. This paper proposed an approach which is visual, interactive, and integrator of the functions involved in earthwork operation such as activity scheduling, resource productivity calculation, optimal distance calculation and profile visualization. This specifically addresses the challenges related to the limited intelligence and capability of simulating multiple strategies of resource allocation in earthwork operation. The proposed development builds upon a prior study (Castro and Dawood, 2005) that developed a knowledge-driven approach to tackle the 'uncertainty' challenge affecting the productivity of resources. This paper hypothesizes that an integrated approach which integrates the various functions involved in earthwork operations and provides an interactive environment where planners could easily change planning decisions and promptly analyze the effect of their decisions could improve the reliability of plans and consequently improve the performance of road construction projects.